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とおく．supA, inf A を求めよ．答のみでよい．

2 次の値を求めよ．

(1) lim
n→∞
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が成り立つことを示せ．
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※解答用紙の裏面使用可

1 次を求めよ．(1) ～ (5) は答のみでよい．

(1) lim
n→∞

n

√
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(2n)!
(2) lim

x→1−0
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(3) lim
x→0

(
x3

sin5 x
− 1

x2

)
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x→0
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(5) (xn−1 log x)(n) (n ∈ N) (6)

∫
arcsinxdx

(7)

∫ 1

− 1√
3

(3x2 + 1)(arctanx)2dx (8)

∫
1

(x2 + 1)2
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2 次の関数の
マ ク ロ ー リ ン

Maclaurin 展開をかっこ内の項まで求めよ．ただし，係数は既約分数にする
こと．

(1)
1√

1 + x+ x2
　（4 次） (2) earctanx　（5 次）

※必要ならば，次の Maclaurin 展開を用いてよい．
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1
−10x2 − 15x+ 43

(x− 1)(x− 2)(x2 + 6x+ 11)
=

A

x− 1
+

B

x− 2
+

Cx+D

x2 + 6x+ 11

が常に成り立つとき

A = 　　　 , B = 　　　 , C = 　　　 , D = 　　　

だから∫
−10x2 − 15x+ 43

(x− 1)(x− 2)(x2 + 6x+ 11)
dx

2 tan
x

2
= t とおくことにより，

∫
1

5 cos x+ 12 sinx+ 13
dx を求めよ．

3
√

x2 + x+ 1 + x = t とおくことにより，
∫

7

(8x+ 3)
√

x2 + x+ 1
dx を求めよ．

4 次の広義積分を求めよ．

(1)

∫ 3

0

(2x+ 1) log xdx 　　　　　 (2)

∫ ∞

1

1

x3 + 1
dx

5 f(x, y) = x3 + y3 − 3x2 − 3y2 − xy について，次の問いに答えよ．

(1) f(x, y) の停留点を求めよ．答のみでよい．

(2) f(x, y) の極値を求めよ．

※ f(x, y)：C2 級で，fx(a, b) = 0, fy(a, b) = 0 のとき
H(a, b) > 0, fxx(a, b) > 0 =⇒ f(a, b)：極小値
H(a, b) > 0, fxx(a, b) < 0 =⇒ f(a, b)：極大値
H(a, b) < 0 =⇒ f(a, b)：極値でない
ただし H(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)

2 とする．



平成 23 年度後期定期試験

※解答用紙の裏面使用可

1 f(x, y) = x3 + y3 +
9

2
x2 +

9

2
y2 + 6xy について，次の問いに答えよ．

(1) f(x, y) の停留点を求めよ．

(2) f(x, y) の極値を求めよ．

(3) x2y + xy2 = 2 に制限した f(x, y) が点 (1, 1) で極値をとるかどうか調べよ．

2 次の積分を求めよ．

(1)
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1

(∫ x

1

x

y
dy

)
dx
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∫ √
3

1

(∫ x2

x

x
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dy

)
dx

(3)

∫ 2

0

(∫ 1

x
2

e−y2dy

)
dx （順序変更）

(4)

∫ ∫
D

y2

x2
dxdy

(
D : 1 <= x2 + y2 <= 4, − x√

3
<= y <=

√
3x

)
(5)

∫ ∫
D

(x+ y)dxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)


