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準備

(0) y′ =
dy

dx

(1) y′ = f(x)
����������

の一般解は，積分の定義より y =

∫
f(x)dx

　（1 階線形常微分方程式で最も単純なもの）

(2) A(x) =

∫
a(x)dx とおくと，A′(x) = a(x) で

(
eA(x)

)′ 合
= eA(x) · A′(x) = a(x)eA(x)

よって
(
eA(x)y

)′ 積
=

(
eA(x)

)′
· y + eA(x) · y′ = a(x)eA(x)y + eA(x)y′ =

(
y′ + a(x)y

)
eA(x)

試験問題
4 (1) y′ + y = x，y(0) = 1 を解け．

y′ + y = x
∗⇐⇒ (y′ + y)ex = xex ⇐⇒ (

exy
)′

= xex

より

exy =

∫
xexdx

= xex −
∫

exdx

= xex − ex + C

x ex

1 ex

�
�

�
�

�
��

�
�

�
�

�
��

... y = e−x
(
xex − ex + C

)
= x − 1 + Ce−x （C：任意定数）

ここで，x = 0 のとき y = 1 より 1 = −1 + C ... C = 2

よって
y = x − 1 + 2e−x

※ y′ + 1y = x より，
∫

1dx = x として ex を両辺にかければ準備 (2) が使える．
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[3] 定数係数 2 階線形常微分方程式
　　　 y′′ + py′ + qy = r(x) · · · (∗)

定義
(∗) に対して

y′′ + py′ + qy = 0 · · · (∗∗), t2 + pt + q = 0 · · · (#)

をそれぞれ補助方程式，特性方程式という．

準備

(3) z′′ = 0 ⇐⇒ z = A + Bx

(4)
(
e−αxy

)′ 積
=

{(
e−αx

)′ · y + e−αx · y′
}′

= −αe−αxy + e−αxy′ より

(
e−αxy

)′′ 積
= −α

{(
e−αx

)′ · y + e−αx · y′
}

+
(
e−αx

)′ · y′ + e−αx · (y′)′

= −α
(−αe−αxy + e−αxy′) − αe−αxy′ + e−αxy′′

=
(
y′′ − 2αy′ + α2y

)
e−αx

(5) z′′ + b2z = 0 の一般解は

z = A cos bx + B sin bx （A, B は任意定数）

※ちゃんと解くのは難しい．

定理 （テキスト p.137）
(1) (#) が異なる実数解 α, β をもつとき，(∗∗) の一般解は

y = Aeαx + Beβx （A, B は任意定数）

(2) (#) が重解 α をもつとき，(∗∗) の一般解は

y = Aeαx + Bxeαx （A, B は任意定数）

(3) (#) が異なる虚数解 a ± bi をもつとき，(∗∗) の一般解は

y = Aeax cos bx + Beax sin bx （A, B は任意定数）

証明：2 次方程式 ax2 + bx + c = 0 の解を α, β とすると

α + β = − b

a
, αβ =

c

a
（解と係数の関係）

が成り立つことに注意．
(1) α + β = −p，αβ = q なので

(∗∗) ⇐⇒ y′′ − (α + β)y′ + αβy = 0 ⇐⇒ (y′ − βy)′ − α(y′ − βy) = 0
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よって z = y′ − βy とおくと z′ −αz = 0 となるので，[1] の方法により z = Aeαx を得る．z を
元にもどすと y′ − βy = Aeαx となるので，再び [1] の方法により

y = Aeαx + Beβx （A, B は任意定数）

(2) 2α = −p，α2 = q なので

(∗∗) ⇐⇒ y′′ − 2αy′ + α2y = 0
(4)⇐⇒ (

e−αxy
)′′

= 0
(3)⇐⇒ e−αxy = A + Bx

よって
y = Aeαx + Bxeαx （A, B は任意定数）

(3) 2a = −p，a2 + b2 = q なので

(∗) ⇐⇒ y′′ − 2ay′ + (a2 + b2)y = 0
(4)⇐⇒ (

e−axy
)′′

+ b2 · e−axy = 0

よって，準備 (5) より e−axy = A cos bx + B sin bx

... y = Aeax cos bx + Beax sin bx （A, B は任意定数）

※複素数まで範囲を広げれば，(1)が使えて簡単になる．ただし，オイラーの公式は既知とする．
α = a − bi，β = a + bi とみれば，(1) より

y = Aea−bi + Bea−bi

= Aea(cos bx − i sin bx) + Bea(cos bx + i sin bx)

= (A + B)eax cos bx + (−Ai + Bi)eax sin bx

となるので，A + B,−Ai + Bi をそれぞれ A, B に書きなおせば

y = Aeax cos bx + Beax sin bx （A, B は任意定数）

定理
(∗) の一般解は，(∗∗) の一般解と (∗) の特殊解の和で表せる．

証明：(∗) の一般解を y，(∗) の特殊解を y0，(∗∗) の一般解を y1 とする．

y′′ + py′ + qy = r(x)

−) y′′
0 + py′

0 + qy0 = r(x)

(y − y0)
′′ + p(y − y0)

′ + q(y − y0) = 0

よって，y − y0 = y1 ... y = y1 + y0
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試験問題
4 (2) y′ − 3y′ + 2y = x，y(0) = y′(0) = 0 を解け．

(i) 補助方程式の一般解
特性方程式は t2 − 3t + 2 = (t − 1)(t − 2) = 0 ... t = 1, 2

よって，上の定理より
y1 = Aex + Be2x （A, B は任意定数）

(ii) 与えられた方程式の特殊解
未定係数法を用いる（テキスト p.138 参照）．y0 = ax + b を与えられた方程式に代入すると

(ax + b)′′ − 3(ax + b)′ + 2(ax + b) = x ... (2a − 1)x + (−3a + 2b) = 0

係数を比較して

2a − 1 = 0, −3a + 2b = 0 ... a =
1

2
, b =

3

4

よって y0 =
1

2
x +

3

4

(iii) 与えられた方程式の一般解
(i)，(ii)，上の定理より

y = y1 + y0 = Aex + Be2x +
1

2
x +

3

4
（A, B は任意定数）

ここで，x = 0 のとき y = 0 より

0 = A + B +
3

4
... 4A + 4B = −3 · · · 1©

また，y′ = Aex + 2Be2x +
1

2
で，x = 0 のとき y′ = 0 より

0 = A + 2B +
1

2
... 2A + 4B = −1 · · · 2©

1©， 2© を解いて A = −1，B =
1

4

... y = −ex +
1

4
e2x +

1

2
x +

3

4

※直接解くには，次のように計算する．
補助方程式の一般解についての定理 (1) の変形と同様にすれば (y′ − 2y)′ − (y′ − 2y) = x

z = y′ − 2y とおくと z′ − z = x となるので，[1] の方法により

e−xz =

∫
xe−xdx = −xe−x − e−x + A

z を元にもどせば y′ − 2y = −x − 1 + Aex となるので，再び [1] の方法により

e−2xy =

∫
(−xe−2x − e−2x + Ae−x)dx =

1

2
xe−2x +

3

4
e−2x − Ae−x + B

よって

y = Aex + Be2x +
1

2
x +

3

4
（A, B は任意定数）
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