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(1) fx,y) = 2* + 222 +y° — 3y
{5 A
folw,y) =423 +42=0 ---OD
f(z,y) =3y =3=0 ---@
D &b da@®+1)=0 .. =0 (z TEHZ1S)
@ &b 31*-1)=0 Sy ==l
£oT, EHEAIEX (0,1), (0,-1)

HIE
fac;v(xay) = 1222 +47 fyy(xay> - 6y7 f:vy(xay) =0
H(z,y) = (1222 + 4) - 6y — 02

“H(0,1)=4-6—-02=24>0, f(0,1)=4>0 .. f(0,1) = —2: fi/M#l
“H(0,-1)=4-(-6)—0*=-24<0 co f(0,=1) ¢ ABRAE T AR
(2) f(z,y) = 2° — 6y + 3y
128 R
fo(z,y) =32? —6y=0 ---O
fy(z,y) = —6x+6y=0 ---©@
@ &b y=2a
O ~MAT D&
322 — 62 =0
3x(r—2)=0 S =0,2

r=00D&&, @ &0 y=0
r=20¢%, @ &b y=2

£oT, BEEAIE (0,0), (2,2)

il

f$z(x7y> = bz, fyy(xay) =0, f:cy(xay) =—6
H(z,y) = 62 -6 — (—6)?

“H(0,0)=0-6—(—6)2=—=36<0 .. f(0,0): ffETRWN
“H(2,2)=12-6 — (—6)> =36 > 0, f,.(2,2)=12>0 co f(2,2) = —4  WBU/ME
(3) flz,y) = a* +y* —day
{5 A
folzw,y) =423 —4y=0 ---@D
fo(z,y) =4y® —dx=0 -~ @
D &b y=2a°
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Q@ ~MAT DL

42° —4x =0
4r(x®—1)=0 oo =0,+1

r=00tE, O &Y y=0
r=+10Dr&E, O &b y==+1 (ESHIHE)

o T, BHESIE (0,0), (£1,+1) (ESHEIE)

HIE

foa(w,y) = 1222, fo, (2, y) = 120°, foy(z,y) = —4

H(x,y) = 122% - 12y — (—4)?

“H(0,0)=0-0—(—4)2=—-16<0 co f(0,0) = HBAE TR

CH(£1,41) =12-12 — (=4)2 =128 > 0, fou(£1,£1) =12 >0
f(£1,41) = =2 MUME (B FRNE)

@ &h y==x
D ~MATB L

8z —2r =0

2z(42* — 1) =0 sz,i—%
r=00¢%, @& y=0
xzf%@&%,@ib yzi%(@%ﬁ@)

FoT, BRI @ﬂ%(r%i%)(@%ﬁ@)

HIRE

f;m?(xay> = 241’2, fyy<x7y) = 27 fxy(xay) = _2

H(x,y) = 2422 - 2 — (—2)?

“H(0,0)=0-2—(-2)2=-4<0 oo f(0,0) : MBfE TR

1 1 1 1
( 5 2) 6 (=2)*=8>0, f ( 5 2) 6>0

f<f?i%>:—%:@$@(@%ﬁ@)
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) flx,y) = 2* — 4oy + 2% + 4o — 4y

.GJJ
EEI

iy

(5

f
fylx,y)=—4dx+4y—4=0 ---Q

@ &b y=x+1

DO ~MUATBLE

4o —4(x+1)+4=0

43 —4x =0

4r(z—1)=0 oo =041
r=00D&E, @ &H y=1
r=10D&E, @ L&D y=2
r=—-10¢%, @ &b y=0

EoT, BRI (0,1), (1,2), (=1,0)
e

fx$($ay) = 121‘2, fyy(x7y) = 47 fxy($ay) =—4
H(z,y) =122% -4 — (—4)?

“H(0,1)=0-4—(-4)?=-16<0 co f(0,1) ¢ MBAE TN

CH(1,2) =124 — (—4)2=32>0, f,u(1,2) =12>0
cH(=1,0)=12-4— (=4)2 = 32> 0, fr(—=1,0) =12>0

6) f(z,y) =’y — 3zy — y?
A

=

-~

)

folz,y) =322y —3y=0 ---@

——

fwy) =2~z -2 =0 @
2 — 3z
@ &b y= 5
O ~MRATBHL
3 3
Q.x—3x_ .x—3x_
3x 5 3 5 =0

2?(2® — 3x) — (2® — 32) =0

(23 —3z)(2? = 1) =0

r(2?2=3)(22-1)=0 .. x=0,+V3,+1
r=00&&, @ &b y=0
r=+/3 DLE, @ &H y=0
r=4+1DeE, @ kv y=71 (ESHIE)

ko, BESIE (0,0), (£v3,0), (£1,F1) (EEFHEE)
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€

fea(@,y) = 62y, fyy(v,y) = =2, foy(z,y) =327 =3

H(z,y) = 6xy - (—2) — (32* — 3)?

“H(0,0)=0-(-2)—(=3)2=-9<0 S £(0,0) = ABAE TR

CH(#vV3,00)=0-(=2)—62=-36 <0 .. f(£/3,0): {fETRL

CH(£1,F1) = (=6) - (=2) =02 =12 >0, fou(£l,T1)=—-6<0
F(ELFL) =1 fKME (ESRFIE)

(7) f(z,y) = 3y + ¢y — 62° — 24a

(AP

{fz(x,y)=3y2—12x—24:0 @
fy(z,y) =6y +3y>=0 - @

OP) x:y24_8

@ ~MAT DL
6'y24_8~y+3y2:0

(> = 8)y +22=0
y(y* +2y—8) =0
y(y —2)(y+4)=0 cooy=0,2,—4

y=00&%, O &b z=-2
y=20c%E, O &b z=-1
y=—40&%E, O £V =2

EoT, BHESIE (-2,0), (—1,2), (2,-4)
e
foo(®,y) = =12, fy(2,y) = 6z + 6y, foy(z,y) =06y
H(z,y) = (—12) - (6z + 6y) — (6y)°
“H(—2,0) = (—=12) - (—12) =02 = 144 > 0, fue(—2,0) = —12<0
f(=2,0) =24 : MiKfH
“H(-1,2)=(-12)-6 — 122 = —216 < 0 co f(=1,2)  fBET AW
CH(2,—4) = (—=12) - (—=12) — (—24)? = —432 < 0 cof(2,—4)  MRETR WD

zy) =2 = 2z —y + 2°

—~
co

~~—

—~

=8 R
fu(zy) = —day —1+6y2=0 ---@
D &b z=92
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Q@ ~MAT DL

—4P — 146y =0
48— 6y +1=0

1 143
2y—-1)@2y*—2y—-1)=0 .. y=g 2\/_
1 1
y:li“— DrE @ LY x:ziQﬁ (=)
XoT, EH-SIT (%%) <2i2\/— 112\/_> (= FEE)

HIE
fa:x(xay) = 27 fyy(xay) = —4x + 12y7 fxy(xay) = _4y
H(z,y) =2 (—4z + 12y) — (—4y)*

1 1 1 1
H(— —)=2-5-(-2?2= zx \ 5 o =2
(4,2) 5—(-2) 6>0, f (4 2) >0

1 1 5)
f (Z, 5) = —E s fNE

H(ziz\/_ 1i\/_) S(244V3) - (—2F2V3)2=-12<0

2++v3 1++v3
/ 2 792

) M T (B RINE)

—~
Nej

) flz,y) = a® — 2%y + 2y° — o
51 5

EH /W

{ fol,y) =22 —22y=0 ---@

I

fo(zy)=—2?+4y—3y*=0 ---©@

D &b 22(1-9y)=0 Soox=0 FhF oy=1
r=0D&tE, @ &0

4y — 3> =0 A

y(4—3y) =0 Soy=0+
y=10&Z, @ &b

—224+1=0

2 =1 ooz =421

Ko, BT (0,0), (o%),m,l)

HIRE
fzx(xay> =2- 23/, fyy<x7y) =4 - 6y7 fmy(xuy> = —2x
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H(z,y) = (2 - 2y)(4 — 6y) — (—22)°
“H(0,0)=2-4—02=8>0, f..(0,00=2>0 oo £(0,0) = 0 : KB/ME

) =
-H(O,%):(—§>-(—4)—02:%>0, fm<0,§):—§<0

“H(#+1,1)=0-(-2) = (F2)?=-4<0 co f(EL D) MBETR D

(10) f(z,y) = zy — 2y — 2xy?

fa@,y) =y — 20y — 2y° = @
fy(ry) =2 — 2% —day =0 @
@ &0 z(1—2-4y)=0 Soox=0 FhF r=1-4y
r=00&&, O &V
y—2y>=0
1
y(1—2y) =0 Sooy=0,—

2
r=1-4y ---@orxE, O &b

y(l—2x—2y) =0

y{l1 —2(1 —4y) —2y} =0

y(6y —1) =0 Sooy=0
y=00D&ZE, @ b z=1

y:%@z%, @ &H z-

k)
"6

LT, EHERIE (0,0), (0, > (1,0), <%%)
IR

foa(z,y) = =2y, fy(x,y) = -4z, fi,(v,y) =1—22—4y
H(z,y) = (=2y) - (—4z) — (1 — 22 — 4y)?

“H(0,0)=0-0—-12=-1<0 oo f(0,0) : HBAE TN
“H <0, %) =(-1)-0—(-1)2=-1<0 cof (0, %) : ME TR
“H(1,0)=0-(—4)— (-1)2=-1<0 .. f(1,0) : fBfETHW

11 1 4 1\ 1 11 1
'H<§’€>=(—§ '(‘?)—(—5) R fm(?@):—ﬁ
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(11) f(z,y) = 2y — 2%y — ay’
1588
y)=y—2ry—y>=0 ---@
y)=x—2>—3ry’=0 ---@
@ r(l—z—-3y*) =0 Soow=0 FEFZIE x=1-3y
x:O@}_’.%,@JZD
y—y =0
y(1—9*) =0 S y=0,41

r=1-3y> @D, O &P
y(1 -2 —y*) =0
y{1-2(1-3y%*) —9°} =0

1
52—1 :O :0’:':—
y(5y* — 1) y 7

y=00&Z, @ £b z=1

1 2
2 1
, 1= (0,0), (0,41), (1,0), (5,i\/€)

HIE
f:cx(xvy> = _2y7 fyy(x7y> = _6Iya fxy(x7y) =1-2r— 3y2
H(z,y) = (=2y) - (=6xy) — (1 — 2z — 3y?)*

“H(0,0)=0-0—-12=-1<0 oo £(0,0) = MEBAE TR
“H(0,£1) = (F2)-0—(-2)>=-4<0 co f(0,£1) : MBETZR D
“H(1,0)=0-0—(-1)’=-1<0 cof(, )-Wﬁ*@f;m
2 1 2
(33030 () (1)1
2 1 2 1
) == o — s MR A
2 1 2 2 4
f”(5’ ﬁ) Vs ! f(5’ f) NI
(12) f(z,y) = 2’y + 2y’ — 2y
A
—3xy+y —y=0 ---@
y=2*+3zy* —2z=0 ---Q
@ (3&:2—1-3/2—1):0 Sooy=0 F7iE yP=1-327
L&, @ &Y
2 —x=0
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z(x? —1)=0 S x=0,%£1
Y¥=1-322 @ D&, @ &P

r(x?+3y2—-1)=0
r{z* +3(1 —32%) -1} =0

(2 —82%) =0 x:O,i%
r=00¢%, @ &b =1 Sy ==+1
r=to OrE @KV =g o y=iy (HBED
EoT, E-SIE (0,0), (£1,0), (0,%1), (i%i%) (EESER)

HIxE
foulz,y) = 62y, fyy(x,y) =62y, foy(w,y) =32"+3y* -1
H(z,y) = 6zy - 62y — (322 + 3y? — 1)?

“H(0,0)=0-0—(-1)?’=-1<0 oo f(0,0) @ MBAE TN
“H(£1,0) = H(0,+1)=0-0-2>= -4 <0 co f(£1,0), £(0,41) ¢ MBAE TR
11 3 3 1\? 11 3
Hl+t—+—)=—-——(=) =2 +—+— | ==
( 2'7 2 2 2 (2) >0’f”< 2’ 2) 5 =0

(f%i%>:—%:@$ﬁ(@%ﬁ@)

3 3 1\° 1 1 3
= (‘5) | (‘5) - (5) =220, fo (i??ﬂ =5 <0
s 1

KiE (5 FNE)

N
N | —
_H
2|
N~~~
I
o0 |
e

3z —y)(z+y)—5x—y)=0 -
(z —y){3(x+y)—5}=0 Sooy=x FX x+y:§

Ny=z 0t DD

322 — 3z =0
x(z—1)=0 S =01

(ii)x—i—yz%@&%, D+® &b

H{(x+y)?—2zy} —3(x+y)=0
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25 _ 5
3(?—2:@)—5—0 L xy—g
&y, z,y i t?—gmgzo*@‘tﬁﬁb% 2 —15t+5=0 DL 705 (fR L REDERR) .

%@K%<tt—5iJ_t&5#b B0 7 D

55 5_5+\/3
N 6 6
tB<.Z®&%,a+ﬂ—% 1%>—&&5 VIS B
BLE (1),(1) &0, #8UE (0,0), (1,1), (o, 8), (B,a)
XD &V y=-32+42 LT, Tz Q ~"MALTHEHAREZRDB I LIFTES.
g

fea(,y) = 62 — 4, fyy(2,y) = 6y —4, fay(z,y) =1
H(z,y) = (6 —4)(6y — 4) — 12 = 36zy — 24(z + y) + 15
H(0,0) = (—4) - (=4) =12 =15>0, f.e(0,0)=—4<0 .. f(0,0) =0 : MiKfE
H1,1)=2-2-12=3>0, fo(1,1)=2>0 .. f(1,1)=—1: fi/h#
“ H(a,8) = H(B,0) = 3603 — 24(a+ f) + 15 =20 — 40+ 15 = =5 < 0
fla,B), f(B,a): MBETZRW
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84. 2 BHEHOES

*ERD, RRED
MARMIE R ESRTEBT 22 WS FEZ[ITLY, ERY

//Df(im y)dzdy

DEHEZ UM, dHETL7-DIZIERRED

/a b { / (()) 1, y)dy} da

ICEI 2T NXR S (EMS ORI ADEL HIZEBETHED) . £TIERRESOFE
Z2LTALS. B L, HEIIHEATLELWS 2L THD.
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IRDBRIRFE I 2R K.

(1) /01 (/l;xgydy) dax (2) /12 (/fxydy) da

R

o [ ([ ) -

1 1
5 12
T
60

1
></ Pydy \ZBWT, dy 2ty By THATAILE2RLTWAHRS, 5%y & y THEY
-z o
3

L7 %yg Cy=1 1—-2 #RALTEEHELTWAS.

XANMOES 2RSS LT
1 3 y=1 5
Budy = | L q? R
/1:vm ydy_ |: 2 Y :|y1—a: ! 2
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3 2x+3 3 —2243
(4) / (/ xydy) dr = / [ﬁyZ]y dx
-1 z2 g L2 y=a2

— / %{(2x—|—3)2—x4}d:€

-1

3 5
9
= / (—I—+2x3+6w2+—x) dx
1 2 2

x® x?

9 3
o v - 3 2
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(7) /01 {/le(Za: + 3y2)dy} dr = /01 [ny + y?’E:;_zdm

2 1
— 2__3__1_ 4
{x 37 4( x) )
2 1
= 1—-———(0—-1
7 701
T
12

1 z+1 1 y=z+1
8 2+ 2y)dy ¢ dr = 2y +y° dx
(8) ( y)dy y+y
0 2241 0 y=a2+1

1

_ /0 (e +1) ~ @+ D} + {41~ (@ + 1)} ]de

(—2z* + 2® — 2% + 2x)dx
0

1
= {—%x5+%4—%3+x2]0
_o2 11

5 4 3
31
~ 60
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6 y=a?
[l e
3 ) y=1
6 1
/ - (—2 — 1) dx
3 T
6 1
/ <—— + :L') dz
3 T

26
—log\a:|+m—
2 J3

1
—(log 6 —log 3) + 5(36 —-9)

27
—log2 + ——
og 2+ 5

2 1 y=e?
/ { ogy] dx
1 L ] y=en
2
1
—(2—2x2)d
JCE

[(2-)e

2
[2 log x — x}

1

2(log2 —0) - (2—1)
210g2 — 1

3 1 y=x
- [l
1 e '

y=1

3 1 1
[
1 2x r+1

3

1
= {—5 log x + log(z + 1)}
1

1
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1
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