
§1. 1 変数関数の微分

★関数の極限
(1) f(x)を aの近くで定義された関数とする．xが aに近づくとき，f(x)の値が一定の値 α に
近づくならば，この α を x → a のときの f(x) の極限値といい

　　　 lim
x→a

f(x) = α または f(x) → α (x → a)

と書く．
※ x → a のときの f(x) の状態は，lim

x→a
f(x) = α　…… 1⃝ の他に

　　　 lim
x→a

f(x) = ∞, lim
x→a

f(x) = −∞　…… 2⃝

　　　 1⃝, 2⃝ のいずれでもない　…… 3⃝

がある． 1⃝ の場合は極限値が存在する（有限確定）といい， 2⃝ の場合は極限値は存在しない
が極限が存在する（確定）といい， 3⃝ の場合は極限が存在しないという．

　　　 lim
x→a

f(x) =


α

∞
−∞
存在しない

※ x が x > a, x < a を満たしながら a に近づくとき，それぞれ x → a+0, x → a− 0 と表し，

　　　 lim
x→a+0

f(x), lim
x→a−0

f(x)

を，それぞれ a における f(x) の右側極限（値），左側極限（値）という．次が成り立つ．

　　　 lim
x→a

f(x) = α ⇐⇒ lim
x→a+0

f(x) = α かつ lim
x→a−0

f(x) = α

(2) f(x) を十分大きい x に対して定義された関数とする．x が限りなく大きくなるとき，f(x)

の値が一定の値 α に近づくならば，この α を x → ∞ のときの f(x) の極限値といい

　　　 lim
x→∞

f(x) = α または f(x) → α (x → ∞)

と書く．
※ (1) と同様に，x → ∞ のときの f(x) の状態は次の場合がある．

　　　 lim
x→∞

f(x) =


α

∞
−∞
存在しない

(3) lim
x→−∞

f(x) も同様に定義され，x → −∞ のときの f(x) の状態は次の場合がある．

　　　 lim
x→−∞

f(x) =


α

∞
−∞
存在しない
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★四則演算に関する極限公式
lim
x→2

f(x) = α, lim
x→2

g(x) = β, k を定数とするとき，次の公式が成り立つ．ただし，2 は

a, ∞, −∞ のいずれかとする．

(1) lim
x→2

{f(x)± g(x)} = α± β （複号同順）(2) lim
x→2

kf(x) = kα

(3) lim
x→2

f(x)g(x) = αβ (4) lim
x→2

f(x)

g(x)
=

α

β
(β ̸= 0)

★はさみうちの原理
f(x) <= h(x) <= g(x), lim

x→2
f(x) = α, lim

x→2
g(x) = α ならば lim

x→2
h(x) = α が成り立つ．ただし，

2 は a, ∞, −∞ のいずれかとする．

★ e について

数列
{(

1 +
1

n

)n}
は収束することが知られている．そこで，この極限値を

ネ ピ ア

Napier の数とい

い e で表す．

　　　 lim
n→∞

(
1 +

1

n

)n

= e

e の値は

　　　 e = 2.71828182845904523536 · · · · · ·

であり，無理数であることが知られている．また，e を底とする対数を自然対数といい，log x

や lnx で表す．

★代表的な極限値

(1) lim
x→∞

1

xα
= 0 (α > 0) (2) lim

x→−∞

1

xn
= 0 (n は自然数)

(3) lim
x→∞

(
1 +

1

x

)x

= e (4) lim
x→−∞

(
1 +

1

x

)x

= e

(5) lim
x→0

(1 + x)
1
x = e (6) lim

x→0

log(1 + x)

x
= 1

(7) lim
x→0

ex − 1

x
= 1 (8) lim

x→0

sinx

x
= 1

(9) lim
x→0

1− cos x

x2
=

1

2
(10) lim

x→0

tanx

x
= 1

証明
(1), (2) は明らか．
(3) x >= 1に対して，n <= x < n+1を満たす自然数 nがただ 1つ存在する（x → ∞ ⇐⇒ n → ∞
に注意）．このとき

　　　
(
1 +

1

n+ 1

)n

<=

(
1 +

1

n+ 1

)x

<

(
1 +

1

x

)x

<=

(
1 +

1

n

)x

<

(
1 +

1

n

)n+1

特に

　　　
(
1 +

1

n+ 1

)n

<

(
1 +

1

x

)x

<

(
1 +

1

n

)n+1

　……(∗)
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が成り立つ．そして

　　　 lim
n→∞

(
1 +

1

n+ 1

)n

= lim
n→∞

(
1 +

1

n+ 1

)n+1

1 +
1

n+ 1

=
e

1
= e

　　　 lim
n→∞

(
1 +

1

n

)n+1

= lim
n→∞

(
1 +

1

n

)n(
1 +

1

n

)
= e · 1 = e

であるから，(∗) で x → ∞ (n → ∞) とすれば，はさみうちの原理より lim
x→∞

(
1 +

1

x

)x

= e が

成り立つ．

(4) x = −t とおけば，x → −∞ のとき t → ∞ であるから

　　　

lim
x→−∞

(
1 +

1

x

)x

= lim
t→∞

(
1 +

1

−t

)−t

= lim
t→∞

(
t− 1

t

)−t

= lim
t→∞

(
t

t− 1

)t

= lim
t→∞

(
1 +

1

t− 1

)t

= lim
t→∞

(
1 +

1

t− 1

)t−1(
1 +

1

t− 1

)
= e · 1
= e

(5) x =
1

t
とおけば，x → +0 のとき t → ∞ であるから

　　　 lim
x→+0

(1 + x)
1
x = lim

t→∞

(
1 +

1

t

)t

= e

また，x =
1

t
とおけば，x → −0 のとき t → −∞ であるから

　　　 lim
x→−0

(1 + x)
1
x = lim

t→−∞

(
1 +

1

t

)t

= e

よって，lim
x→0

(1 + x)
1
x = e が成り立つ．

(6) lim
x→0

log(1 + x)

x
= lim

x→0
log(1 + x)

1
x = log e = 1

※対数関数の連続性（p.10 参照）を用いている．

(7) ex − 1 = t とおくと，x → 0 のとき t → 0 であるから

　　　 lim
x→0

ex − 1

x
= lim

t→0

t

log(1 + t)
= 1
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(8) 0 < x <
π

2
のとき，右図より

　　　△OAB <扇形 OAB <△OAC

は明らか．

　　　



△OAB =
1

2
· 1 · sinx =

1

2
sin x

扇形 OAB =
1

2
· 12 · x =

1

2
x

△OAC =
1

2
· 1 · tanx =

1

2
tan x

であるから

　　　
1

2
sinx <

1

2
x <

1

2
tanx

　　　 sin x < x <
sin x

cos x

　...　 cos x <
sin x

x
< 1

O
1

B

C

1

x

A

また， lim
x→+0

cosx = 1 であるから，はさみうちの原理より lim
x→+0

sinx

x
= 1 が成り立つ．

次に，x = −t とおけば，x → −0 のとき t → +0 であるから

　　　 lim
x→−0

sin x

x
= lim

t→+0

sin(−t)

−t
= lim

t→+0

sin t

t
= 1

よって，lim
x→0

sin x

x
= 1 が成り立つ．

(9) lim
x→0

1− cos x

x2
= lim

x→0

1− cos2 x

x2(1 + cos x)
= lim

x→0

(
sinx

x

)2
1

1 + cos x
= 12 · 1

1 + 1
=

1

2

(10) lim
x→0

tanx

x
= lim

x→0

sinx

x
· 1

cos x
= 1 · 1

1
= 1

【問題 1.1】 　
次の極限値を求めよ．

(1) lim
x→1

x2 + 2x− 3

x2 + x− 2
(2) lim

x→−1

x2 + 3x+ 2

x2 − 2x− 3

(3) lim
x→2

2x2 − x− 6

3x2 − 2x− 8
(4) lim

x→2

x3 − 8

2x2 − x− 6

(5) lim
x→1

x3 + 3x− 4

5x2 + x− 6
(6) lim

x→3

x3 − 4x2 + x+ 6

2x2 − 7x+ 3

(7) lim
x→1

x3 + 3x− 4

5x2 + x− 6
(8) lim

x→ 1
2

2x3 + x2 − 3x+ 1

6x2 − x− 1

(9) lim
x→3

x+ 1−
√
3x+ 7√

2x+ 3 −
√

x+ 6
(10) lim

x→0

1

x3

{√
1 + 2x −

(
1 + x− x2

2

)}
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(11) lim
x→∞

(√
x2 − 3x+ 2 − x

)
(12) lim

x→−∞

√
x2 + x+ 1

x

(13) lim
x→−∞

(√
x2 + x+ 1 −

√
x2 + 1

)
(14) lim

x→−∞
x
(√

x2 + 6x+ 10 + x+ 3
)

(15) lim
x→0

sin 2x

3x
(16) lim

x→0

3 tan 8x

2x

(17) lim
x→0

tan 5x

sin 2x
(18) lim

x→0

x2

1− cos 2x

(19) lim
x→0

1− cos 7x

x2
(20) lim

x→0

sin2 3x

1− cosx

(21) lim
x→0

1− cos 7x

sin2 5x
(22) lim

x→0

1− cos 6x

x sin x

(23) lim
x→0

x tanx

cosx− 1
(24) lim

x→0

sin 3x(1− cos 5x)

tan3 x

(25) lim
x→0

sin 7x(1− cos 3x)

tan3 2x
(26) lim

x→0

√
1 + x sin x − cosx

sin2 x

(27) lim
x→0

x− 3 sin x

2x+ sin x
(28) lim

x→0

sin 2x+ sin 4x

sin 3x+ sin 5x

(29) lim
x→0

√
1 + 6x2 − 1

sin2 x
(30) lim

x→0

√
1− tan 2x −

√
1 + tan 2x

x

(31) lim
x→0

√
1 + x −

√
1− x

3
√

1 + sinx − 3
√

1− sin x
(32) lim

x→0

tanx− sinx

x3

(33) lim
x→0

cos 11x− cos 6x

x2
(34) lim

x→0

√
cos 5x −

√
cos 3x

x2

(35) lim
x→0

x2(− sinx+ 3 sin 3x)

tanx(cosx− cos 3x)
(36) lim

x→0

sin(3 sin x)

x

(37) lim
x→0

sin(1− cosx)

x2
(38) lim

x→0

sin 2x− 2 sin x

x sin2 x

(39) lim
x→0

1

x2

(
sin 2x

2x
− sin 3x

3x

)
(40) lim

x→∞

(
1 +

2

x

)x

(41) lim
x→0

ex − e−x

x
(42) lim

x→0

e(x+1)2 − ex
2+1

x

(43) lim
x→0

esin 2x − 1

log(1 + x)
(44) lim

x→0

ex sin 3x − 1

x log(1 + x)

解答

(1) lim
x→1

x2 + 2x− 3

x2 + x− 2
= lim

x→1

(x− 1)(x+ 3)

(x− 1)(x+ 2)
= lim

x→1

x+ 3

x+ 2
=

4

3

(2) lim
x→−1

x2 + 3x+ 2

x2 − 2x− 3
= lim

x→−1

(x+ 1)(x+ 2)

(x+ 1)(x− 3)
= lim

x→−1

x+ 2

x− 3
= − 1

4
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(3) lim
x→2

2x2 − x− 6

3x2 − 2x− 8
= lim

x→2

(x− 2)(2x+ 3)

(x− 2)(3x+ 4)
= lim

x→2

2x+ 3

3x+ 4
=

7

10

(4) lim
x→2

x3 − 8

2x2 − x− 6
= lim

x→2

(x− 2)(x2 + 2x+ 4)

(x− 2)(2x+ 3)
= lim

x→2

x2 + 2x+ 4

2x+ 3
=

12

7

(5) lim
x→1

x3 + 3x− 4

5x2 + x− 6
= lim

x→1

(x− 1)(x2 + x+ 4)

(x− 1)(5x+ 6)
= lim

x→1

x2 + x+ 4

5x+ 6
=

6

11

(6) lim
x→3

x3 − 4x2 + x+ 6

2x2 − 7x+ 3
= lim

x→3

(x− 3)(x2 − x− 2)

(x− 3)(2x− 1)
= lim

x→3

x2 − x− 2

2x− 1
=

4

5

(7) lim
x→1

x3 + 3x− 4

5x2 + x− 6
= lim

x→1

(x− 1)(x2 + x+ 4)

(x− 1)(5x+ 6)
= lim

x→1

x2 + x+ 4

5x+ 6
=

6

11

(8) lim
x→ 1

2

2x3 + x2 − 3x+ 1

6x2 − x− 1
= lim

x→ 1
2

(2x− 1)(x2 + x− 1)

(2x− 1)(3x+ 1)
= lim

x→ 1
2

x2 + x− 1

3x+ 1
= − 1

10

(9) lim
x→3

x+ 1−
√
3x+ 7√

2x+ 3 −
√

x+ 6
= lim

x→3

{(x+ 1)2 − (3x+ 7)}(
√
2x+ 3 +

√
x+ 6 )

{(2x+ 3)− (x+ 6)}(x+ 1 +
√
3x+ 7 )

= lim
x→3

(x2 − x− 6))(
√

2x+ 3 +
√
x+ 6 )

(x− 3)(x+ 1 +
√
3x+ 7 )

= lim
x→3

(x− 3)(x+ 2)(
√
2x+ 3 +

√
x+ 6 )

(x− 3)(x+ 1 +
√
3x+ 7 )

= lim
x→3

(x+ 2)(
√

2x+ 3 +
√

x+ 6 )

x+ 1 +
√

3x+ 7
=

15

4

(10) lim
x→0

1

x3

{√
1 + 2x −

(
1 + x− x2

2

)}
= lim

x→0

(1 + 2x)−
(
1 + x− x2

2

)2

x3

{√
1 + 2x +

(
1 + x− x2

2

)}

= lim
x→0

(1 + 2x)−
(
1 + x2 +

x4

4
+ 2x− x3 − x2

)
x3

(√
1 + 2x + 1 + x− x2

2

) = lim
x→0

x3 − x4

4

x3

(√
1 + 2x + 1 + x− x2

2

)

= lim
x→0

1− x

4
√

1 + 2x + 1 + x− x2

2

=
1

1 + 1
=

1

2

(11) lim
x→∞

(√
x2 − 3x+ 2 − x

)
= lim

x→∞

(x2 − 3x+ 2)− x2

√
x2 − 3x+ 2 + x

= lim
x→∞

−3x+ 2√
x2 − 3x+ 2 + x

= lim
x→∞

−3 +
2

x√
1− 3

x
+

2

x2
+ 1

=
−3

1 + 1
= − 3

2

(12) x = −t とおくと，x → −∞ のとき t → ∞ であるから

lim
x→−∞

√
x2 + x+ 1

x
= lim

t→∞

√
t2 − t+ 1

−t
= lim

t→∞

(
−
√

1− 1

t
+

1

t2

)
= −1

(13) x = −t とおくと，x → −∞ のとき t → ∞ であるから
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lim
x→−∞

(√
x2 + x+ 1 −

√
x2 + 1

)
= lim

t→∞

(√
t2 − t+ 1 −

√
t2 + 1

)
= lim

t→∞

(t2 − t+ 1)− (t2 + 1)√
t2 − t+ 1 +

√
t2 + 1

= lim
t→∞

−t√
t2 − t+ 1 +

√
t2 + 1

= lim
t→∞

−1√
1− 1

t
+

1

t2
+

√
1 +

1

t2

=
−1

1 + 1
= − 1

2

(14) x = −t とおくと，x → −∞ のとき t → ∞ であるから

lim
x→−∞

x
(√

x2 + 6x+ 10 + x+ 3
)
= lim

t→∞

{
−t
(√

t2 − 6t+ 10 − t+ 3
)}

= lim
t→∞

−t{(t2 − 6t+ 10)− (t− 3)2}√
t2 − 6t+ 10 + (t− 3)

= lim
t→∞

−t{(t2 − 6t+ 10)− (t2 − 6t+ 9)}√
t2 − 6t+ 10 + t− 3

= lim
t→∞

−t√
t2 − 6t+ 10 + t− 3

= lim
t→∞

−1√
1− 6

t
+

10

t2
+ 1− 3

t

=
−1

1 + 1
= − 1

2

(15) lim
x→0

sin 2x

3x
= lim

x→0

(
sin 2x

2x
· 2

3

)
= 1 · 2

3
=

2

3

(16) lim
x→0

3 tan 8x

2x
= lim

x→0

(
tan 8x

8x
· 12
)

= 1 · 12 = 12

(17) lim
x→0

tan 5x

sin 2x
= lim

x→0

(
tan 5x

5x
· 2x

sin 2x
· 5

2

)
= 1 · 1 · 5

2
=

5

2

(18) lim
x→0

x2

1− cos 2x
= lim

x→0

{
(2x)2

1− cos 2x
· 1

4

}
= 2 · 1

4
=

1

2

※ lim
x→0

x2

1− cos 2x
= lim

x→0

x2

2 sin2 x
= lim

x→0

{
1

2
·
( x

sin x

)2}
=

1

2
· 12 = 1

2

(19) lim
x→0

1− cos 7x

x2
= lim

x→0

{
1− cos 7x

(7x)2
· 49
}

=
1

2
· 49 =

49

2

(20) lim
x→0

sin2 3x

1− cos x
= lim

x→0

{(
sin 3x

3x

)2

· x2

1− cos x
· 9

}
= 12 · 2 · 9 = 18

(21) lim
x→0

1− cos 7x

sin2 5x
= lim

x→0

{
1− cos 7x

(7x)2
·
(

5x

sin 5x

)2

· 49

25

}
=

1

2
· 12 · 49

25
=

49

50

(22) lim
x→0

1− cos 6x

x sin x
= lim

x→0

{
1− cos 6x

(6x)2
· x

sin x
· 36
}

=
1

2
· 1 · 36 = 18

(23) lim
x→0

x tanx

cosx− 1
= lim

x→0

(
− tan x

x
· x2

1− cos x

)
= −1 · 2 = −2

(24) lim
x→0

sin 3x(1− cos 5x)

tan3 x
= lim

x→0

{
sin 3x

3x
· 1− cos 5x

(5x)2
·
( x

tanx

)3
· 75
}

= 1 · 1

2
· 13 · 75 =

75

2

(25) lim
x→0

sin 7x(1− cos 3x)

tan3 2x
= lim

x→0

{
sin 7x

7x
· 1− cos 3x

(3x)2
·
(

2x

tan 2x

)3

· 7 · 9
8

}
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= 1 · 1

2
· 13 · 7 · 9

8
=

63

16

(26) lim
x→0

√
1 + x sinx − cos x

sin2 x
= lim

x→0

(1 + x sinx)− cos2 x

sin2 x(
√

1 + x sinx + cos x)

= lim
x→0

sin2 x+ x sin x

sin2 x(
√

1 + x sin x + cos x)
= lim

x→0

{(
1 +

x

sin x

)
· 1√

1 + x sin x + cos x

}
= (1 + 1) · 1

1 + 1
= 1

(27) lim
x→0

x− 3 sin x

2x+ sin x
= lim

x→0

1− 3 · sinx

x

2 +
sinx

x

=
1− 3 · 1
2 + 1

= − 2

3

(28) lim
x→0

sin 2x+ sin 4x

sin 3x+ sin 5x
= lim

x→0

sin 2x

x
+

sin 4x

x
sin 3x

x
+

sin 5x

x

= lim
x→0

sin 2x

2x
· 2 + sin 4x

4x
· 4

sin 3x

3x
· 3 + sin 5x

5x
· 5

=
1 · 2 + 1 · 4
1 · 3 + 1 · 5

=
3

4

※和積の公式を用いて計算してもよい．

lim
x→0

sin 2x+ sin 4x

sin 3x+ sin 5x
= lim

x→0

2 sin 3x cosx

2 sin 4x cosx
= lim

x→0

(
sin 3x

3x
· 4x

sin 4x
· 3

4

)
= 1 · 1 · 3

4
=

3

4

(29) lim
x→0

√
1 + 6x2 − 1

sin2 x
= lim

x→0

(1 + 6x2)− 1

sin2 x(
√
1 + 6x2 + 1)

= lim
x→0

6x2

sin2 x(
√

1 + 6x2 + 1)

= lim
x→0

{( x

sinx

)2
· 6√

1 + 6x2 + 1

}
= 12 · 6

1 + 1
= 3

(30) lim
x→0

√
1− tan 2x −

√
1 + tan 2x

x
= lim

x→0

(1− tan 2x)− (1 + tan 2x)

x(
√

1− tan 2x +
√

1 + tan 2x )

= lim
x→0

−2 tan 2x

x(
√
1− tan 2x +

√
1 + tan 2x )

= lim
x→0

(
tan 2x

2x
· −4√

1− tan 2x +
√
1 + tan 2x

)
= 1 · −4

1 + 1
= −2

(31) lim
x→0

√
1 + x −

√
1− x

3
√

1 + sinx − 3
√

1− sin x

= lim
x→0

{(1 + x)− (1− x)}{( 3
√

1 + sinx )2 + 3
√

1 + sinx 3
√
1− sinx + ( 3

√
1− sin x )2}

{(1 + sin x)− (1− sinx)}(
√
1 + x +

√
1− x )

= lim
x→0

2x{( 3
√
1 + sin x )2 + 3

√
1 + sin x 3

√
1− sinx + ( 3

√
1− sinx )2}

2 sin x(
√

1 + x +
√
1− x )

= lim
x→0

{
x

sinx
· ( 3

√
1 + sinx )2 + 3

√
1 + sinx 3

√
1− sinx + ( 3

√
1− sinx )2√

1 + x +
√

1− x

}
= 1 · 12 + 1 · 1 + 12

1 + 1
=

3

2
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※
1

a− b
=

a2 + ab+ b2

a3 − b3
を用いて 3 乗根の有理化をした．

(32) lim
x→0

tanx− sin x

x3
= lim

x→0

tanx(1− cosx)

x3
= lim

x→0

(
tanx

x
· 1− cosx

x2

)
= 1 · 1

2
=

1

2

(33) lim
x→0

cos 11x− cos 6x

x2
= lim

x→0

(1− cos 6x)− (1− cos 11x)

x2

= lim
x→0

{
1− cos 6x

(6x)2
· 36− 1− cos 11x

(11x)2
· 121

}
=

1

2
· 36− 1

2
· 121 = − 85

2

※和積の公式を用いて計算してもよい．

lim
x→0

cos 11x− cos 6x

x2
= lim

x→0

−2 sin
17x

2
sin

5x

2
x2

= lim
x→0

−2 ·
sin

17x

2
17x

2

·
sin

5x

2
5x

2

· 17

2
· 5

2


= −2 · 1 · 1 · 17

2
· 5

2
= − 85

2

(34) lim
x→0

√
cos 5x −

√
cos 3x

x2
= lim

x→0

cos 5x− cos 3x

x2(
√
cos 5x +

√
cos 3x )

= lim
x→0

(1− cos 3x)− (1− cos 5x)

x2(
√

cos 5x +
√
cos 3x )

= lim
x→0

1− cos 3x

(3x)2
· 9− 1− cos 5x

(5x)2
· 25

√
cos 5x +

√
cos 3x

=

1

2
· 9− 1

2
· 25

1 + 1
= −4

※ lim
x→0

√
cos 5x −

√
cos 3x

x2
= lim

x→0

cos 5x− cos 3x

x2(
√
cos 5x +

√
cos 3x )

= lim
x→0

−2 sin 4x sin x

x2(
√

cos 5x +
√

cos 3x )

= lim
x→0

(
sin 4x

4x
· sin x

x
· −8√

cos 5x +
√
cos 3x

)
= 1 · 1 · −8

1 + 1
= −4

(35) lim
x→0

x2(− sinx+ 3 sin 3x)

tanx(cosx− cos 3x)
= lim

x→0

− sinx

x
+ 3 · sin 3x

3x
· 3

tanx

x
·
{

1− cos 3x

(3x)2
· 9− 1− cosx

x2

}
=

−1 + 3 · 1 · 3

1 ·
(

1

2
· 9− 1

2

) = 2

※分母・分子に 3 倍角の公式を使ったり，分母の cos x− cos 3x に和積の公式を使ってもよい．

(36) lim
x→0

sin(3 sinx)

x
= lim

x→0

{
sin(3 sinx)

3 sin x
· sinx

x
· 3
}

= 1 · 1 · 3 = 3

(37) lim
x→0

sin(1− cosx)

x2
= lim

x→0

{
sin(1− cosx)

1− cos x
· 1− cos x

x2

}
= 1 · 1

2
=

1

2

(38) lim
x→0

sin 2x− 2 sin x

x sin2 x
= lim

x→0

2 sin x cos x− 2 sin x

x sin2 x
= lim

x→0

2(cosx− 1)

x sin x

= lim
x→0

{
1− cos x

x2
· x

sin x
· (−2)

}
=

1

2
· 1 · (−2) = −1
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(39) lim
x→0

1

x2

(
sin 2x

2x
− sin 3x

3x

)
= lim

x→0

3 sin 2x− 2 sin 3x

6x3

= lim
x→0

6 sin x cosx− 2(3 sinx− 4 sin3 x)

6x3
= lim

x→0

2 sin x(3 cos x− 3 + 4 sin2 x)

6x3

= lim
x→0

sin x{4 sin2 x− 3(1− cos x)}
3x3

= lim
x→0

sinx(1− cosx){4(1 + cosx)− 3}
3x3

= lim
x→0

(
sin x

x
· 1− cos x

x2
· 1 + 4 cosx

3

)
= 1 · 1

2
· 5

3
=

5

6

(40) lim
x→∞

(
1 +

2

x

)x

= lim
x→∞


1 +

1
x

2

 x
2


2

= e2

(41) lim
x→0

ex − e−x

x
= lim

x→0

(e2x − 1)e−x

x
= lim

x→0

(
e2x − 1

2x
· 2e−x

)
= 1 · 2 = 2

(42) lim
x→0

e(x+1)2 − ex
2+1

x
= lim

x→0

(e2x − 1)ex
2+1

x
= lim

x→0

(
e2x − 1

2x
· 2ex2+1

)
= 1 · 2e = 2e

(43) lim
x→0

esin 2x − 1

log(1 + x)
= lim

x→0

{
esin 2x − 1

sin 2x
· x

log(1 + x)
· sin 2x

2x
· 2
}

= 1 · 1 · 1 · 2 = 2

(44) lim
x→0

ex sin 3x − 1

x log(1 + x)
= lim

x→0

{
ex sin 3x − 1

x sin 3x
· x

log(1 + x)
· sin 3x

3x
· 3
}

= 1 · 1 · 1 · 3 = 3

★区間
実数 a, b (a < b) に対して，a < x < b をみたす実数 x 全体を (a, b) で表し，a <= x <= b をみ
たす実数 x 全体を [a, b] で表す．(a, b), [a, b] はそれぞれ開区間，閉区間といわれる．この他に
も，(a, b], [a, b), (a,∞), [a,∞), (−∞, a), (−∞, a], (−∞,∞) などが区間である（最後の区間
は実数全体のこと）．今後は，区間で定義された関数を考える．

★関数の連続性
f(x) を区間 I で定義された関数とする．a ∈ I として，lim

x→a
f(x) = f(a)　…… 1⃝ が成り立つ

とき，f(x) は x = a で連続であるという．a が I の端点でないときは

　　　 1⃝ ⇐⇒ lim
x→a+0

f(x) = f(a)　かつ　 lim
x→a−0

f(x) = f(a)

である．一方，a が I の端点のときは， 1⃝ は片側極限で考える．また，f(x) が I の各点で連
続であるとき，f(x) は I で連続であるという．

★導関数
f(x) を開区間 I で微分可能な関数，すなわち，各要素 x ∈ I に対し，極限値

　　　 f ′(x) = lim
h→0

f(x+ h)− f(x)

h

が存在するとき，f ′(x) を f(x) の導関数という．また，f(x) から f ′(x) を求めることを，f(x)

を x について微分するという．一般に，微分可能ならば連続である．
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★四則演算に関する微分法則
f(x), g(x) を開区間 I で微分可能な関数とするとき，次が成り立つ．

(1) {kf(x)}′ = kf ′(x) (k は定数)

(2) {f(x)± g(x)}′ = f ′(x)± g′(x) （複号同順）

(3) 積の微分法則

　　　 {f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x)

(4) 商の微分法則

　　　
{

f(x)

g(x)

}′

=
f ′(x)g(x)− f(x)g′(x)

g(x)2
　　特に　

{
1

g(x)

}′

= − g′(x)

g(x)2

ただし，g(x) ̸= 0 とする．

証明

(1) {kf(x)}′ = lim
h→0

kf(x+ h)− kf(x)

h
= k × lim

h→0

f(x+ h)− f(x)

h
= kf ′(x)

(2) {f(x)± g(x)}′ = lim
h→0

{f(x+ h)± g(x+ h)} − {f(x)± g(x)}
h

= lim
h→0

{
f(x+ h)− f(x)

h
± g(x+ h)− g(x)

h

}
= f ′(x)± g′(x) （複号同順）

(3) {f(x)g(x)}′ = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

{f(x+ h)g(x+ h)− f(x)g(x+ h)}+ {f(x)g(x+ h)− f(x)g(x)}
h

= lim
h→0

{
f(x+ h)− f(x)

h
× g(x+ h) + f(x)× g(x+ h)− g(x)

h

}
= f ′(x)g(x) + f(x)g′(x)

※「微分可能ならば連続」を使った．

(4)

{
f(x)

g(x)

}′

= lim
h→0

f(x+ h)

g(x+ h)
− f(x)

g(x)

h

= lim
h→0

{f(x+ h)g(x)− f(x)g(x)} − {f(x)g(x+ h)− f(x)g(x)}
hg(x+ h)g(x)

= lim
h→0

f(x+ h)− f(x)

h
× g(x)− f(x)× g(x+ h)− g(x)

h
g(x+ h)g(x)

=
f ′(x)g(x)− f(x)g′(x)

g(x)2

※「微分可能ならば連続」を使った．
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★合成関数の微分法則
f(x), g(x) をそれぞれ開区間 I, J で微分可能な関数とし，f(I) ⊂ J をみたすとする．このとき

　　　 {g(f(x))}′ = g′(f(x)) · f ′(x)

が成り立つ．

証明
y = f(x+ h), b = f(x) とおくと，f(x) の連続性より h → 0 のとき y → b なので

　　　 {g(f(x))}′ = lim
h→0

g(f(x+ h))− g(f(x))

h

= lim
h→0

{
g(f(x+ h))− g(f(x))

f(x+ h)− f(x)
× f(x+ h)− f(x)

h

}
= lim

y→b

g(y)− g(b)

y − b
× lim

h→0

f(x+ h)− f(x)

h

= g′(b)× f ′(x)

= g′(f(x)) · f ′(x)

★代表的な導関数

(1) (c)′ = 0 (c は定数) (2) (xn)′ = nxn−1 (n ∈ Z)

(3) (xα)′ = αxα−1 (α ̸= 0) (4) (ex)′ = ex

(5) (log |x|)′ = 1

x
(6) (sin x)′ = cos x

(7) (cosx)′ = − sin x (8) (tanx)′ =
1

cos2 x

※ (3) で α =
1

2
とした (

√
x )′ =

1

2
√

x
は公式としたい．

証明

(1) (c)′ = lim
h→0

c− c

h
= 0

(2) n ∈ N のとき，二項定理 (a+ b)n =
n∑

k=0

nCka
n−kbk を用いると

　　　 (xn)′ = lim
h→0

(x+ h)n − xn

h

= lim
h→0

(nC0x
n + nC1x

n−1h+ nC2x
n−2h2 + · · ·+ nCn−1xh

n−1 + nCnh
n)− xn

h

= lim
h→0

{
nxn−1 +

n(n− 1)

2
xn−2h+ · · ·+ hn−1

}
= nxn−1

また，n = −m (m ∈ N) のとき

　　　 (xn)′ =

(
1

xm

)′

= − mxm−1

x2m
= −mx−m−1 = nxn−1
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(4) (ex)′ = lim
h→0

ex+h − ex

h
= ex × lim

h→0

eh − 1

h
= ex

(3) x > 0 のとき xα = elog x
α
= eα log x であるから

　　　 (xα)′ =
(
eα log x

)′
= eα log x · α

x
= xα · α

x
= αxα−1

※ α ∈ Z のときは x > 0 でなくてもよい．

(5) h が十分 0 に近いとき，
x+ h

x
> 0 なので

(log |x|)′ = lim
h→0

log |x+ h| − log |x|
h

= lim
h→0

log
x+ h

x
h

=
1

x
× lim

h→0

log

(
1 +

h

x

)
x

h

=
1

x

(6) (sin x)′ = lim
h→0

sin(x+ h)− sin x

h

= lim
h→0

{sin x cosh+ cos x sinh} − sinx

h

= lim
h→0

sinx(cosh− 1) + cos x sinh

h

= − sinx× lim
h→0

(
1− cosh

h2
· h
)
+ cos x× lim

h→0

sinh

h

= cosx

(7) (cos x)′ = lim
h→0

cos(x+ h)− cosx

h

= lim
h→0

{cosx cosh− sin x sinh} − cos x

h

= lim
h→0

cosx(cosh− 1)− sin x sinh

h

= − cosx× lim
h→0

(
1− cosh

h2
· h
)
− sin x× lim

h→0

sinh

h

= − sinx

(8) (tan x)′ = lim
h→0

tan(x+ h)− tanx

h

= lim
h→0

tanx+ tanh

1− tanx tanh
− tanx

h

= lim
h→0

tanh(1 + tan2 x)

h(1− tanx tanh)

=
1

cos2 x
× lim

h→0

(
tanh

h
· 1

1− tanx tanh

)
=

1

cos2 x
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★ 1 次関数との合成
定数 A ( ̸= 0), B に対して，次が成り立つ．

(3)
{
(Ax+B)α

}′
= Aα(Ax+B)α−1 (α ̸= 0)

(4)
(
eAx+B

)′
= AeAx+B

(5)
(
log |Ax+B|

)′
=

A

Ax+B

(6)
{
sin(Ax+B)

}′
= A cos(Ax+B)

(7)
{
cos(Ax+B)

}′
= −A sin(Ax+B)

(8)
{
tan(Ax+B)

}′
=

A

cos2(Ax+B)

★公式としたい合成微分
f(x) を開区間 I で微分可能な関数とする．

(1) f(x) > 0 (x ∈ I) のとき

　　　 {f(x)α}′ = αf(x)α−1 · f ′(x) (α ̸= 0)

　　　
{√

f(x)
}′

=
f ′(x)

2
√

f(x)

※ α ∈ Z のときは f(x) > 0 (x ∈ I) でなくてもよい．

(2) f(x) ̸= 0 (x ∈ I) のとき

　　　 {log |f(x)|}′ = f ′(x)

f(x)
（対数微分）

【問題 1.2】 　
次の関数を微分せよ．

(1)
3x+ 4

2x− 3
(2)

x2 − 3

x− 2

(3)
2x2 − x+ 3

x− 4
(4)

2x2 − 3x+ 2

x− 1

(5)
3x− 4

x2 + 1
(6)

2x+ 3

x2 − 2x− 3

(7)
−3x+ 5

x2 − 4x+ 7
(8)

2x+ 1

x2 − 2x+ 5

(9)
x2 − x+ 1

x2 + 2
(10)

3x2 − 2x+ 1

x2 + 2

(11)
2x2

2x2 + 3x− 2
(12)

3x2 − 4x+ 1

x2 − 2x+ 3

(13)
−x2 + 3x− 1

x2 + 5x+ 7
(14)

−2x2 + 5x+ 1

x2 − x+ 3
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(15)
2x2 + x− 1

x2 − 2x+ 3
(16)

−5x2 + 8x+ 1

x2 − 3x+ 4

(17)
−4x2 + 7x+ 1

x2 + x+ 1
(18)

2x2 − x− 1

x2 + 3x+ 5

(19)
x2 − 4x+ 7

2x2 − x+ 3
(20)

x2 − 3x− 1

x2 + x+ 2

(21)
x3 + 4x2 + 5x+ 1

x+ 1
(22)

x4 + x2 + 1

x3 + x

(23) sin 5x sin 4x (24) sin 2x cos 3x

(25) sin 3x cos 5x (26) cos 7x cos 4x

(27)
1

tanx
(28)

sin x

1− cosx

(29)
cos x

1− sin x
(30)

sinx

1 + cos x

(31)
1− sinx

1 + cosx
(32)

1− cosx

1 + sinx

(33)
cos x

sinx+ cos x
(34)

cosx

3 + sin x

(35)
sinx

2− cos x
(36)

cosx

1− 4 sin x

(37)
sin(2x+ 1)

3x− 5
(38) e3x − 6e2x + 9ex + 2

(39) (x− 1)ex−2 (40) x2e−x

(41) (x2 − 3)ex (42) (x2 + 4x+ 4)e−x

(43) (x2 − 2x− 11)e
x
2 (44) (x2 + 3x)e−

x
2

(45) (2x3 + 3x2 + 4x+ 4)e−x (46) e−x sin 2x

(47) e3x cos 5x (48) x2 log x− x

(49) x3 log 2x (50) log x(2 log x− 1)

(51) (log x− 1)(2 log x+ x3 − 4x) (52)
ex − 2

3ex + 4

(53)
ex − e−x

ex + e−x
(54)

x

log x− 1

(55)
e

x
4

x2 − 3x+ 18
(56)

xex

ex + 3

(57)
xe5x

ex − 2
(58)

x cos 4x

log x
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(59)
x log x

log x+ 1
(60)

x log x

x+ log x

(61)
x log x

x− log x
(62)

ex

x log x

(63)
e2x log x

log x− 3
(64)

(
x+ 1

2x2 + 1

)4

(65)

(
x

x2 + 1

)3

(66)
√

x2 − 2x+ 2

(67)
√
1 + sin2 x (68)

√
x

x+ 1

(69)

√
x+ 1

x− 1
(70)

√
5x− 2

7x+ 13

(71)

√
x2 − 4x+ 3

x+ 1
(72) x

√
9− x2

(73) (x+ 1)
√
1− x2 (74) (x+ 2)

√
x2 − 1

(75)
x+ 1√
x2 + 1

(76)
1− x√
1 + x2

(77)
x− 3√
4x− x2

(78)
1 + 2x√

3− 5x− x2

(79)
(log x)2

x
(80)

sin5 x

x3

(81) log(ex + sin x) (82) log(e2x + x)

(83) log(tan x) (84) log(log x)3

(85) log(x+
√

x2 + 7 ) (86) log(−x+
√

x2 + 4 )

(87) log |x−
√
x2 + 9 | (88) log

1− cosx

1 + cos x

(89) log
cosx+ sin x

cos x− sinx
(90) log

x√
x2 + 1 + 1

(91) x
√

x (x > 0) (92) xtanx (x > 0)

(93) (log x)sinx (x > 1) (94)

(
1 +

1

x

)x

(x < −1, 0 < x)

解答

(1)

(
3x+ 4

2x− 3

)′

=
3 · (2x− 3)− (3x+ 4) · 2

(2x− 3)2
= − 17

(2x− 3)2

(2)

(
x2 − 3

x− 2

)′

=
2x · (x− 2)− (x2 − 3) · 1

(x− 2)2
=

x2 − 4x+ 3

(x− 2)2
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(3)

(
2x2 − x+ 3

x− 4

)′

=
(4x− 1) · (x− 4)− (2x2 − x+ 3) · 1

(x− 4)2
=

2x2 − 16x+ 1

(x− 4)2

(4)

(
2x2 − 3x+ 2

x− 1

)′

=
(4x− 3) · (x− 1)− (2x2 − 3x+ 2) · 1

(x− 1)2
=

2x2 − 4x+ 1

(x− 1)2

(5)

(
3x− 4

x2 + 1

)′

=
3 · (x2 + 1)− (3x− 4) · 2x

(x2 + 1)2
=

−3x2 + 8x+ 3

(x2 + 1)2

(6)

(
2x+ 3

x2 − 2x− 3

)′

=
2 · (x2 − 2x− 3)− (2x+ 3) · (2x− 2)

(x2 − 2x− 3)2
=

−2x2 − 6x

(x2 − 2x− 3)2

(7)

(
−3x+ 5

x2 − 4x+ 7

)′

=
−3 · (x2 − 4x+ 7)− (−3x+ 5) · (2x− 4)

(x2 − 4x+ 7)2
=

3x2 − 10x− 1

(x2 − 4x+ 7)2

(8)

(
2x+ 1

x2 − 2x+ 5

)′

=
2 · (x2 − 2x+ 5)− (2x+ 1) · (2x− 2)

(x2 − 2x+ 5)2
=

−2x2 − 2x+ 12

(x2 − 2x+ 5)2

(9)

(
x2 − x+ 1

x2 + 2

)′

=
(2x− 1) · (x2 + 2)− (x2 − x+ 1) · 2x

(x2 + 2)2
=

x2 + 2x− 2

(x2 + 2)2

(10)

(
3x2 − 2x+ 1

x2 + 2

)′

=
(6x− 2) · (x2 + 2)− (3x2 − 2x+ 1) · 2x

(x2 + 2)2
=

2x2 + 10x− 4

(x2 + 2)2

(11)

(
2x2

2x2 + 3x− 2

)′

=
4x · (2x2 + 3x− 2)− 2x2 · (4x+ 3)

(2x2 + 3x− 2)2
=

6x2 − 8x

(2x2 + 3x− 2)2

(12)

(
3x2 − 4x+ 1

x2 − 2x+ 3

)′

=
(6x− 4) · (x2 − 2x+ 3)− (3x2 − 4x+ 1) · (2x− 2)

(x2 − 2x+ 3)2

=
−2x2 + 16x− 10

(x2 − 2x+ 3)2

(13)

(
−x2 + 3x− 1

x2 + 5x+ 7

)′

=
(−2x+ 3) · (x2 + 5x+ 7)− (−x2 + 3x− 1) · (2x+ 5)

(x2 + 5x+ 7)2

=
−8x2 − 12x+ 26

(x2 + 5x+ 7)2

(14)

(
−2x2 + 5x+ 1

x2 − x+ 3

)′

=
(−4x+ 5) · (x2 − x+ 3)− (−2x2 + 5x+ 1) · (2x− 1)

(x2 − x+ 3)2

=
−3x2 − 14x+ 16

(x2 − x+ 3)2

(15)

(
2x2 + x− 1

x2 − 2x+ 3

)′

=
(4x+ 1) · (x2 − 2x+ 3)− (2x2 + x− 1) · (2x− 2)

(x2 − 2x+ 3)2

=
−5x2 + 14x+ 1

(x2 − 2x+ 3)2

(16)

(
−5x2 + 8x+ 1

x2 − 3x+ 4

)′

=
(−10x+ 8) · (x2 − 3x+ 4)− (−5x2 + 8x+ 1) · (2x− 3)

(x2 − 3x+ 4)2

=
7x2 − 42x+ 35

(x2 − 3x+ 4)2

(17)

(
−4x2 + 7x+ 1

x2 + x+ 1

)′

=
(−8x+ 7) · (x2 + x+ 1)− (−4x2 + 7x+ 1) · (2x+ 1)

(x2 + x+ 1)2
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=
−11x2 − 10x+ 6

(x2 + x+ 1)2

(18)

(
2x2 − x− 1

x2 + 3x+ 5

)′

=
(4x− 1) · (x2 + 3x+ 5)− (2x2 − x− 1) · (2x+ 3)

(x2 + 3x+ 5)2
=

7x2 + 22x− 2

(x2 + 3x+ 5)2

(19)

(
x2 − 4x+ 7

2x2 − x+ 3

)′

=
(2x− 4) · (2x2 − x+ 3)− (x2 − 4x+ 7) · (4x− 1)

(2x2 − x+ 3)2
=

7x2 − 22x− 5

(2x2 − x+ 3)2

(20)

(
x2 − 3x− 1

x2 + x+ 2

)′

=
(2x− 3) · (x2 + x+ 2)− (x2 − 3x− 1) · (2x+ 1)

(x2 + x+ 2)2
=

4x2 + 6x− 5

(x2 + x+ 2)2

(21)

(
x3 + 4x2 + 5x+ 1

x+ 1

)′

=
(3x2 + 8x+ 5) · (x+ 1)− (x3 + 4x2 + 5x+ 1) · 1

(x+ 1)2

=
2x3 + 7x2 + 8x+ 4

(x+ 1)2

(22)

(
x4 + x2 + 1

x3 + x

)′

=
(4x3 + 2x) · (x3 + x)− (x4 + x2 + 1) · (3x2 + 1)

(x3 + x)2

=
x6 + 2x4 − 2x2 − 1

(x3 + x)2

(23) (sin 5x sin 4x)′ = 5 cos 5x · sin 4x+ sin 5x · 4 cos 4x = 5 cos 5x sin 4x+ 4 sin 5x cos 4x

(24) (sin 2x cos 3x)′ = 2 cos 2x · cos 3x+ sin 2x · (−3 sin 3x) = 2 cos 2x cos 3x− 3 sin 2x sin 3x

(25) (sin 3x cos 5x)′ = 3 cos 3x · cos 5x+ sin 3x · (−5 sin 5x) = 3 cos 3x cos 5x− 5 sin 3x sin 5x

(26) (cos 7x cos 4x)′ = −7 sin 7x · cos 4x+ cos 7x · (−4 sin 4x) = −7 sin 7x cos 4x− 4 cos 7x sin 4x

(27)

(
1

tanx

)′

=
( cosx

sinx

)′
=

− sin x · sinx− cos x · cosx
sin2 x

=
− sin2 x− cos2 x

sin2 x
=

−1

sin2 x

(28)

(
sin x

1− cos x

)′

=
cosx · (1− cosx)− sinx · sinx

(1− cos x)2
=

cosx− cos2 x− sin2 x

(1− cosx)2

=
−1 + cos x

(1− cosx)2
=

−1

1− cosx

(29)

(
cos x

1− sin x

)′

=
− sinx · (1− sinx)− cosx · (− cos x)

(1− sinx)2
=

− sinx+ sin2 x+ cos2 x

(1− sin x)2

=
1− sin x

(1− sinx)2
=

1

1− sinx

(30)

(
sin x

1 + cosx

)′

=
cos x · (1 + cosx)− sin x · (− sinx)

(1 + cos x)2
=

cosx+ cos2 x+ sin2 x

(1 + cos x)2

=
1 + cos x

(1 + cos x)2
=

1

1 + cosx

(31)

(
1− sinx

1 + cosx

)′

=
− cosx · (1 + cos x)− (1− sinx) · (− sinx)

(1 + cos x)2

=
− cos x− cos2 x+ sin x− sin2 x

(1 + cos x)2
=

−1− cos x+ sin x

(1 + cos x)2
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(32)

(
1− cos x

1 + sinx

)′

=
sinx · (1 + sin x)− (1− cos x) · cos x

(1 + sin x)2
=

sin x+ sin2 x− cos x+ cos2 x

(1 + sin x)2

=
1 + sin x− cos x

(1 + sinx)2

(33)

(
cosx

sinx+ cos x

)′

=
− sinx · (sinx+ cos x)− cosx · (cosx− sin x)

(sinx+ cos x)2

=
− sin2 x− sin x cos x− cos2 x+ sinx cosx

(sinx+ cos x)2
=

−1

(sinx+ cos x)2

(34)

(
cos x

3 + sinx

)′

=
− sin x · (3 + sinx)− cos x · cos x

(3 + sin x)2
=

−3 sin x− sin2 x− cos2 x

(3 + sin x)2

=
−1− 3 sin x

(3 + sin x)2

(35)

(
sin x

2− cos x

)′

=
cosx · (2− cosx)− sinx · sinx

(2− cos x)2
=

2 cos x− cos2 x− sin2 x

(2− cosx)2

=
−1 + 2 cosx

(2− cos x)2

(36)

(
cos x

1− 4 sin x

)′

=
− sin x · (1− 4 sin x)− cosx · (−4 cos x)

(1− 4 sin x)2

=
− sin x+ 4 sin2 x+ 4 cos2 x

(1− 4 sin x)2
=

4− sin x

(1− 4 sin x)2

(37)

{
sin(2x+ 1)

3x− 5

}′

=
2 cos(2x+ 1) · (3x− 5)− sin(2x+ 1) · 3

(3x− 5)2

=
2(3x− 5) cos(2x+ 1)− 3 sin(2x+ 1)

(3x− 5)2

(38) (e3x − 6e2x + 9ex + 2)′ = 3e3x − 12e2x + 9ex

(39) {(x− 1)ex−2}′ = 1 · ex−2 + (x− 1) · ex−2 = xex−2

(40) (x2e−x)′ = 2x · e−x + x2 · (−e−x) = (2x− x2)e−x

(41) {(x2 − 3)ex}′ = 2x · ex + (x2 − 3) · ex = (x2 + 2x− 3)ex

(42) {(x2 + 4x+ 4)e−x}′ = (2x+ 4) · e−x + (x2 + 4x+ 4) · (−e−x) = (−x2 − 2x)e−x

(43) {(x2 − 2x− 11)e
x
2 }′ = (2x− 2) · e x

2 + (x2 − 2x− 11) · 1

2
e

x
2 =

(
x2

2
+ x− 15

2

)
e

x
2

(44) {(x2 + 3x)e−
x
2 }′ = (2x+ 3) · e− x

2 + (x2 + 3x) ·
(
− 1

2
e−

x
2

)
=

(
− x2

2
+

x

2
+ 3

)
e−

x
2

(45) {(2x3 + 3x2 + 4x+ 4)e−x}′ = (6x2 + 6x+ 4) · e−x + (2x3 + 3x2 + 4x+ 4) · (−e−x)

= (−2x3 + 3x2 + 2x)e−x

(46) (e−x sin 2x)′ = −e−x · sin 2x+ e−x · 2 cos 2x = e−x(− sin 2x+ 2 cos 2x)

(47) (e3x cos 5x)′ = 3e3x · cos 5x+ e3x · (−5 sin 5x) = e3x(3 cos 5x− 5 sin 5x)

(48) (x2 log x− x)′ =

(
2x · log x+ x2 · 1

x

)
− 1 = 2x log x+ x− 1
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(49) (x3 log 2x)′ = 3x2 · log 2x+ x3 · 2

2x
= 3x2 log 2x+ x2

(50) {log x(2 log x− 1)}′ = 1

x
· (2 log x− 1) + log x · 2

x
=

4 log x− 1

x

(51) {(log x− 1)(2 log x+ x3 − 4x)}′ = 1

x
· (2 log x+ x3 − 4x) + (log x− 1) ·

(
2

x
+ 3x2 − 4

)
=

2

x
log x+ x2 − 4 +

(
2

x
+ 3x2 − 4

)
log x− 2

x
− 3x2 + 4 =

(
3x2 − 4 +

4

x

)
log x− 2x2 − 2

x

(52)

(
ex − 2

3ex + 4

)′

=
ex · (3ex + 4)− (ex − 2) · 3ex

(3ex + 4)2
=

3e2x + 4ex − 3e2x + 6ex

(3ex + 4)2
=

10ex

(3ex + 4)2

(53)

(
ex − e−x

ex + e−x

)′

=
(ex + e−x) · (ex + e−x)− (ex − e−x) · (ex − e−x)

(ex + e−x)2

=
(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
=

e2x + 2 + e−2x − e2x + 2− e−2x

(ex + e−x)2
=

4

(ex + e−x)2

(54)

(
x

log x− 1

)′

=
1 · (log x− 1)− x · 1

x
(log x− 1)2

=
log x− 2

(log x− 1)2

(55)

(
e

x
4

x2 − 3x+ 18

)′

=

1

4
e

x
4 · (x2 − 3x+ 18)− e

x
4 · (2x− 3)

(x2 − 3x+ 18)2

=

1

4
{(x2 − 3x+ 18)− 4(2x− 3)}e x

4

(x2 − 3x+ 18)2
=

(x2 − 11x+ 30)e
x
4

4(x2 − 3x+ 18)2

(56)

(
xex

ex + 3

)′

=
(1 · ex + x · ex) · (ex + 3)− xex · ex

(ex + 3)2
=

ex{(1 + x)(ex + 3)− xex}
(ex + 3)2

=
ex(ex + 3 + xex + 3x− xex)

(ex + 3)2
=

ex(ex + 3x+ 3)

(ex + 3)2

(57)

(
xe5x

ex − 2

)′

=
(1 · e5x + x · 5e5x) · (ex − 2)− xe5x · ex

(ex − 2)2
=

e5x{(1 + 5x)(ex − 2)− xex}
(ex − 2)2

=
e5x(ex − 2 + 5xex − 10x− xex)

(ex − 2)2
=

e5x(4xex + ex − 10x− 2)

(ex − 2)2

(58)

(
x cos 4x

log x

)′

=
{1 · cos 4x+ x · (−4 sin 4x)} · log x− x cos 4x · 1

x
(log x)2

=
cos 4x log x− 4x sin 4x log x− cos 4x

(log x)2

(59)

(
x log x

log x+ 1

)′

=

(
1 · log x+ x · 1

x

)
· (log x+ 1)− x log x · 1

x

(log x+ 1)2
=

(log x+ 1)2 − log x

(log x+ 1)2

=
(log x)2 + log x+ 1

(log x+ 1)2
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(60)

(
x log x

x+ log x

)′

=

(
1 · log x+ x · 1

x

)
· (x+ log x)− x log x ·

(
1 +

1

x

)
(x+ log x)2

=
x log x+ (log x)2 + x+ log x− x log x− log x

(x+ log x)2
=

x+ (log x)2

(x+ log x)2

(61)

(
x log x

x− log x

)′

=

(
1 · log x+ x · 1

x

)
· (x− log x)− x log x ·

(
1− 1

x

)
(x− log x)2

=
x log x− (log x)2 + x− log x− x log x+ log x

(x− log x)2
=

x− (log x)2

(x− log x)2

(62)

(
ex

x log x

)′

=

ex · x log x− ex ·
(
1 · log x+ x · 1

x

)
(x log x)2

=
ex(x log x− log x− 1)

(x log x)2

(63)

(
e2x log x

log x− 3

)′

=

(
2e2x · log x+ e2x · 1

x

)
· (log x− 3)− e2x log x · 1

x

(log x− 3)2

=

e2x
{(

2 log x+
1

x

)
(log x− 3)− log x

x

}
(log x− 3)2

=

e2x
{
2(log x)2 − 6 log x+

log x

x
− 3

x
− log x

x

}
(log x− 3)2

=

e2x
{
2(log x)2 − 6 log x− 3

x

}
(log x− 3)2

=
e2x {2x(log x)2 − 6x log x− 3}

x(log x− 3)2

(64)

{(
x+ 1

2x2 + 1

)4
}′

= 4

(
x+ 1

2x2 + 1

)3

· 1 · (2x2 + 1)− (x+ 1) · 4x
(2x2 + 1)2

= 4

(
x+ 1

2x2 + 1

)3

· −2x2 − 4x+ 1

(2x2 + 1)2
=

4(−2x2 − 4x+ 1)(x+ 1)3

(2x2 + 1)5

(65)

{(
x

x2 + 1

)3
}′

= 3

(
x

x2 + 1

)2

· 1 · (x2 + 1)− x · 2x
(x2 + 1)2

= 3

(
x

x2 + 1

)2

· −x2 + 1

(x2 + 1)2

=
3x2(−x2 + 1)

(x2 + 1)4

(66)
(√

x2 − 2x+ 2
)′
=

2x− 2

2
√

x2 − 2x+ 2
=

x− 1√
x2 − 2x+ 2

(67)
(√

1 + sin2 x
)′

=
2 sin x · cosx
2
√
1 + sin2 x

=
sinx cos x√
1 + sin2 x

(68)

(√
x

x+ 1

)′

=
1

2

√
x

x+ 1

· 1 · (x+ 1)− x · 1
(x+ 1)2

=
1

2

√
x+ 1

x
· 1

(x+ 1)2
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=
1

2(x+ 1)2

√
x+ 1

x

(69)

(√
x+ 1

x− 1

)′

=
1

2

√
x+ 1

x− 1

· 1 · (x− 1)− (x+ 1) · 1
(x− 1)2

=
1

2

√
x− 1

x+ 1
· −2

(x− 1)2

=
−1

(x− 1)2

√
x− 1

x+ 1

(70)

(√
5x− 2

7x+ 13

)′

=
1

2

√
5x− 2

7x+ 13

· 5 · (7x+ 13)− (5x− 2) · 7
(7x+ 13)2

=
1

2

√
7x+ 13

5x− 2
· 79

(7x+ 13)2
=

79

2(7x+ 13)2

√
7x+ 13

5x− 2

(71)

(√
x2 − 4x+ 3

x+ 1

)′

=
1

2

√
x2 − 4x+ 3

x+ 1

· (2x− 4) · (x+ 1)− (x2 − 4x+ 3) · 1
(x+ 1)2

=
1

2

√
x+ 1

x2 − 4x+ 3
· x2 + 2x− 7

(x+ 1)2
=

x2 + 2x− 7

2(x+ 1)2

√
x+ 1

x2 − 4x+ 3

(72)
(
x
√

9− x2
)′
= 1 ·

√
9− x2 + x · −2x

2
√
9− x2

=
√
9− x2 − x2

√
9− x2

=
(9− x2)− x2

√
9− x2

=
9− 2x2

√
9− x2

(73)
{
(x+ 1)

√
1− x2

}′
= 1 ·

√
1− x2 + (x+ 1) · −2x

2
√
1− x2

=
√
1− x2 − (x+ 1)x√

1− x2

=
(1− x2)− (x2 + x)√

1− x2
=

1− x− 2x2

√
1− x2

(74)
{
(x+ 2)

√
x2 − 1

}′
= 1 ·

√
x2 − 1 + (x+ 2) · 2x

2
√
x2 − 1

=
√
x2 − 1 +

(x+ 2)x√
x2 − 1

=
(x2 − 1) + (x2 + 2x)√

x2 − 1
=

2x2 + 2x− 1√
x2 − 1

(75)

(
x+ 1√
x2 + 1

)′

=

1 ·
√
x2 + 1 − (x+ 1) · 2x

2
√

x2 + 1
x2 + 1

=

√
x2 + 1 − (x+ 1)x√

x2 + 1
x2 + 1

=
(x2 + 1)− (x2 + x)

(x2 + 1)
√

x2 + 1
=

−x+ 1

(x2 + 1)
√

x2 + 1

(76)

(
1− x√
1 + x2

)′

=

−1 ·
√

1 + x2 − (1− x) · 2x

2
√
1 + x2

1 + x2
=

−
√
1 + x2 − (1− x)x√

1 + x2

1 + x2

=
−(1 + x2)− (x− x2)

(1 + x2)
√

1 + x2
=

−1− x

(1 + x2)
√
1 + x2
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(77)

(
x− 3√
4x− x2

)′

=

1 ·
√

4x− x2 − (x− 3) · 4− 2x

2
√
4x− x2

4x− x2

=

√
4x− x2 − (x− 3)(2− x)√

4x− x2

4x− x2
=

(4x− x2)− (−x2 + 5x− 6)

(4x− x2)
√
4x− x2

=
−x+ 6

(4x− x2)
√

4x− x2

(78)

(
1 + 2x√

3− 5x− x2

)′

=

2 ·
√
3− 5x− x2 − (1 + 2x) · −5− 2x

2
√
3− 5x− x2

3− 5x− x2

=

2
√

3− 5x− x2 +
(1 + 2x)(5 + 2x)

2
√

3− 5x− x2

3− 5x− x2
=

4(3− 5x− x2) + (5 + 12x+ 4x2)

2(3− 5x− x2)
√
3− 5x− x2

=
17− 8x

2(3− 5x− x2)
√

3− 5x− x2

(79)

{
(log x)2

x

}′

=

(
2 log x · 1

x

)
· x− (log x)2 · 1

x2
=

(2− log x) log x

x2

(80)

(
sin5 x

x3

)′

=
(5 sin4 x · cosx) · x3 − sin5 x · 3x2

x6
=

x2 sin4 x(5x cosx− 3 sin x)

x6

=
(5x cos x− 3 sin x) sin4 x

x4

(81) {log(ex + sin x)}′ = ex + cos x

ex + sin x

(82) {log(e2x + x)}′ = 2e2x + 1

e2x + x

(83) {log(tanx)}′ =

1

cos2 x
tanx

=
1

sin x cos x

(84) {log(log x)3}′ =
3(log x)2 · 1

x
(log x)3

=
3

x log x

(85)
{
log(x+

√
x2 + 7 )

}′
=

1 +
2x

2
√
x2 + 7

x+
√
x2 + 7

=

√
x2 + 7 + x√

x2 + 7 (x+
√
x2 + 7 )

=
1√

x2 + 7

(86)
{
log(−x+

√
x2 + 4 )

}′
=

−1 +
2x

2
√

x2 + 4

−x+
√
x2 + 4

=
−
√
x2 + 4 + x√

x2 + 4 (−x+
√

x2 + 4 )
= − 1√

x2 + 4

(87)
(
log |x−

√
x2 + 9 |

)′
=

1− 2x

2
√
x2 + 9

x−
√
x2 + 9

=

√
x2 + 9 − x√

x2 + 9 (x−
√
x2 + 9 )

= − 1√
x2 + 9

(88)

(
log

1− cosx

1 + cosx

)′

= {log(1− cosx)− log(1 + cos x)}′ = sin x

1− cos x
− − sin x

1 + cos x
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=
sin x(1 + cos x) + sinx(1− cos x)

(1− cos x)(1 + cos x)
=

sin x+ sinx cosx+ sin x− sin x cos x

(1− cos x)(1 + cos x)

=
2 sin x

(1− cosx)(1 + cos x)
=

2 sin x

1− cos2 x
=

2 sin x

sin2 x
=

2

sin x

(89)

(
log

cosx+ sin x

cos x− sinx

)′

=
1

cosx+ sin x

cosx− sinx

· (− sinx+ cos x) · (cosx− sinx)− (cosx+ sin x) · (− sin x− cos x)

(cosx− sin x)2

=
cos x− sinx

cosx+ sin x
· (cosx− sinx)2 + (cos x+ sin x)2

(cosx− sin x)2

=
cos2 x− 2 cos x sinx+ sin2 x+ cos2 x+ 2 cos x sin x+ sin2 x

(cosx+ sin x)(cosx− sinx)

=
2

(cosx+ sin x)(cosx− sinx)
=

2

cos2 x− sin2 x
=

2

cos 2x

(90)

(
log

x√
x2 + 1 + 1

)′

=
{
log x− log(

√
x2 + 1 + 1)

}′
=

1

x
−

2x

2
√
x2 + 1√

x2 + 1 + 1

=
1

x
− x√

x2 + 1 (
√
x2 + 1 + 1)

=

√
x2 + 1 (

√
x2 + 1 + 1)− x2

x
√
x2 + 1 (

√
x2 + 1 + 1)

=
x2 + 1 +

√
x2 + 1 − x2

x
√

x2 + 1 (
√
x2 + 1 + 1)

=
1 +

√
x2 + 1

x
√
x2 + 1 (

√
x2 + 1 + 1)

=
1

x
√

x2 + 1

(91) x > 0 のとき，x
√

x = elog x
√

x
= e

√
x log x であるから(

x
√

x
)′
=
(
e
√

x log x
)′
= e

√
x log x ·

(
1

2
√
x

· log x+
√

x · 1

x

)
= x

√
x · log x+ 2

2
√

x

(92) x > 0 のとき，xtanx = elog x
tan x

= etanx log x であるから

(xtanx)
′
=
(
etanx log x

)′
= etanx log x ·

(
1

cos2 x
· log x+ tan x · 1

x

)
= xtanx

(
log x

cos2 x
+

tanx

x

)
(93) x > 1 のとき，(log x)sinx = elog(log x)

sin x
= esinx log(log x) であるから

{
(log x)sinx

}′
=
{
esinx log(log x)

}′
= esinx log(log x) ·

cos x · log(log x) + sin x ·

1

x
log x


= (log x)sinx

{
cos x log(log x) +

sinx

x log x

}
(94) x < −1, 0 < x のとき，

(
1 +

1

x

)x

= elog(1+
1
x
)x = ex log(1+ 1

x
) であるから

{(
1 +

1

x

)x}′

=
{
ex log(1+ 1

x
)
}′

= ex log(1+ 1
x
) ·

1 · log
(
1 +

1

x

)
+ x ·

− 1

x2

1 +
1

x


=

(
1 +

1

x

)x{
log

(
1 +

1

x

)
− 1

x+ 1

}
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【問題 1.3】 　
次の関数の増減を調べ，極値を求めよ．

(1)
x− 1

x2 − x+ 1
(2)

2x− 1

x2 − 2x+ 3

(3) (4x3 + 16x2 + 10x+ 5)e−2x (4)
2x2 + x− 2

x2 + x− 2

(5)
x3

3
+ x+ 2 log |x| (6)

3x2 + 1

(x− 1)3

(7) x+
√
9− x2

解答

(1) f(x) =
x− 1

x2 − x+ 1
とおくと

f ′(x) =
1 · (x2 − x+ 1)− (x− 1) · (2x− 1)

(x2 − x+ 1)2

=
−x2 + 2x

(x2 − x+ 1)2

=
−x(x− 2)

(x2 − x+ 1)2

+
− −
0 2

f ′(x) の分母は (x2 − x + 1)2 > 0 であるから，f ′(x) の符号は分子の −x(x− 2) が決める．分
子 −x(x− 2) のグラフは上図のようになるから，f ′(x) の符号がわかる．よって，増減表は

x · · · 0 · · · 2 · · ·

f ′(x) − 0 + 0 −

f(x) ↘ −1 ↗ 1
3

↘

...

 x = 2 のとき極大値
1

3
x = 0 のとき極小値 −1

(2) f(x) =
2x− 1

x2 − 2x+ 3
とおくと

f ′(x) =
2 · (x2 − 2x+ 3)− (2x− 1) · (2x− 2)

(x2 − 2x+ 3)2

=
−2x2 + 2x+ 4

(x2 − 2x+ 3)2

=
−2(x+ 1)(x− 2)

(x2 − 2x+ 3)2

+
− −
−1 2

f ′(x) の分母は (x2 − 2x+ 3)2 > 0 であるから，f ′(x) の符号は分子の −2(x+ 1)(x− 2) が決め
る．分子 −2(x+ 1)(x− 2) のグラフは上図のようになるから，f ′(x) の符号がわかる．よって，
増減表は
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x · · · −1 · · · 2 · · ·

f ′(x) − 0 + 0 −

f(x) ↘ − 1
2

↗ 1 ↘

...

 x = 2 のとき極大値 1

x = −1 のとき極小値 − 1

2

(3) f(x) = (4x3 + 16x2 + 10x+ 5)e−2x とおくと

f ′(x) = (12x2 + 32x+ 10) · e−2x + (4x3 + 16x2 + 10x+ 5) · (−2e−2x)

= (−8x3 − 20x2 + 12x)e−2x

= −4x(x+ 3)(2x− 1)e−2x

++
− −
0

−3

1
2

e−2x > 0 であるから，f ′(x) の符号は −4x(x+ 3)(2x− 1) が決める．−4x(x+ 3)(2x− 1) のグ
ラフは上図のようになるから，f ′(x) の符号がわかる．よって，増減表は

x · · · −3 · · · 0 · · · 1
2

· · ·

f ′(x) + 0 − 0 + 0 −

f(x) ↗ 11e6 ↘ 5 ↗ 29
2e

↘

...


x = −3 のとき極大値 11e6

x = 0 のとき極小値 5

x =
1

2
のとき極大値

29

2e

(4) f(x) =
2x2 + x− 2

x2 + x− 2
とおくと

f ′(x) =
(4x+ 1) · (x2 + x− 2)− (2x2 + x− 2) · (2x+ 1)

(x2 + x− 2)2

=
x2 − 4x

(x2 + x− 2)2

=
x(x− 4)

(x2 + x− 2)2 −
+ +

0 4

f ′(x) の分母は (x2 + x− 2)2 > 0 であるから，f ′(x) の符号は分子の x(x− 4) が決める．分子
x(x− 4) のグラフは上図のようになるから，f ′(x) の符号がわかる．よって，増減表は

x · · · −2 · · · 0 · · · 1 · · · 4 · · ·

f ′(x) + + 0 − − 0 +

f(x) ↗ ↗ 1 ↘ ↘ 17
9

↗
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...

 x = 0 のとき極大値 1

x = 4 のとき極小値
17

9

(5) f(x) =
x3

3
+ x+ 2 log |x| とおくと

f ′(x) = x2 + 1 +
2

x

=
x3 + x+ 2

x

=
x(x+ 1)(x2 − x+ 2)

x2
−

+ +
−1 0

f ′(x) の分母は x2 > 0 であり，分子において x2 − x + 2 =

(
x− 1

2

)2

+
7

4
> 0 であるから，

f ′(x) の符号は分子にある x(x+ 1) が決める．分子にある x(x+1) のグラフは上図のようにな
るから，f ′(x) の符号がわかる．よって，増減表は

x · · · −1 · · · 0 · · ·

f ′(x) + 0 − +

f(x) ↗ − 4
3

↘ ↗

...

 x = −1 のとき極大値 − 4

3
極小値なし

(6) f(x) =
3x2 + 1

(x− 1)3
とおくと

f ′(x) =
6x · (x− 1)3 − (3x2 + 1) · 3(x− 1)2

(x− 1)6

=
3(x− 1)2{2x(x− 1)− (3x2 + 1)}

(x− 1)6

=
3(−x2 − 2x− 1)

(x− 1)4

=
−3(x+ 1)2

(x− 1)4

−1

− −

f ′(x) の分母は (x− 1)4 > 0 であるから，f ′(x) の符号は分子の −3(x+ 1)2 が決める．分子の
−3(x+ 1)2 のグラフは上図のようになるから，f ′(x) の符号がわかる．よって，増減表は

x · · · −1 · · · 1 · · ·

f ′(x) − 0 − −

f(x) ↘ − 1
2

↘ ↘

... 極値なし
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(7) f(x) = x+
√
9− x2 とおくと

f ′(x) = 1 +
−2x

2
√

9− x2
=

√
9− x2 − x√
9− x2

である．f ′(x) の分母は
√
9− x2 > 0 であるから，f ′(x) の符号は分子の

√
9− x2 − x が決め

る．このグラフをかくのではなく，曲線 y =
√
9− x2 · · · 1⃝ と直線 y = x · · · 2⃝ の上下関係

で符合を決めにいく．ここで， 1⃝ は

　　 y2 = 9− x2　かつ　 y >= 0

すなわち

　　 x2 + y2 = 9　かつ　 y >= 0

であるから，原点中心，半径 3 の円の上半分であ
る．よって， 1⃝ と 2⃝ の概形は右図のようになる．
したがって，増減表は

x −3 · · · 3√
2

· · · 3

f ′(x) + 0 −

f(x) −3 ↗ 3
√

2 ↘ 3

1⃝

2⃝

xO

y

−3 33√
2

...

 x =
3√
2
のとき極大値 3

√
2

極小値なし

★
ロ ピ タ ル

L’Hospital の定理
f(x), g(x) が (a, b) で微分可能で，g′(x) ̸= 0 (a < x < b) のとき，

　　　 lim
x→a+0

f(x) = lim
x→a+0

g(x) = 0, lim
x→a+0

f ′(x)

g′(x)
= A

であれば

　　　 lim
x→a+0

f(x)

g(x)
= A

が成り立つ．
※ L’Hospital の定理にはいろいろな形があり，おおざっぱにいうと次のようになる．

lim
x→2

f(x)

lim
x→2

g(x)
が不定形，すなわち，

0

0
や

(±)∞
(±)∞

の形になるとき， lim
x→2

f ′(x)

g′(x)
が存在すれば，

lim
x→2

f(x)

g(x)
= lim

x→2

f ′(x)

g′(x)
が成り立つ．
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【問題 1.4】 　
L’Hospitalの定理を用いて，次の極限値を求めよ．ただし，不定形であることは述べなくてよい．

(1) lim
x→0

e2x − 1− 2x

1− cos x
(2) lim

x→0

x− sin x

x3

(3) lim
x→0

tanx− x

x3
(4) lim

x→0

x− (1 + x) log(1 + x)

x2

(5) lim
x→0

log(1 + x) + e−x − 1

sin x− x cosx
(6) lim

x→0

log(1 + x)− sinx

x2

(7) lim
x→0

x2 + 2 log(cosx)

x2 sin2 x
(8) lim

x→0

(
1

x2
− 1

x tanx

)
(9) lim

x→0

(
1

x2
− x

tan3 x

)
(10) lim

x→0

(
1

x sinx
− 1

x2

)
(11) lim

x→0

(
1

sin2 x
− 1

x2

)
(12) lim

x→0

(
x

sin3 x
− 1

x2

)
(13) lim

x→0

1

x

(
ex + 1

ex − 1
− 2

x

)
(14) lim

x→+0
(sinx)x

(15) lim
x→0

(cosx)
1
x2 (16) lim

x→+0
(sinx)

1
log x

解答
今後，L’Hospital の定理を用いる部分を「 ∗

=」で表すことにする．

(1) lim
x→0

e2x − 1− 2x

1− cos x
∗
= lim

x→0

2e2x − 2

sinx
= lim

x→0

(
x

sin x
· e2x − 1

2x
· 4
)

= 1 · 1 · 4 = 4

(2) lim
x→0

x− sin x

x3

∗
= lim

x→0

1− cosx

3x2
= lim

x→0

(
1

3
· 1− cosx

x2

)
=

1

3
· 1

2
=

1

6

(3) lim
x→0

tanx− x

x3

∗
= lim

x→0

1

cos2 x
− 1

3x2
= lim

x→0

tan2 x

3x2
= lim

x→0

{
1

3
·
(

tanx

x

)2
}

=
1

3
· 12 = 1

3

(4) lim
x→0

x− (1 + x) log(1 + x)

x2

∗
= lim

x→0

1−
{
1 · log(1 + x) + (1 + x) · 1

1 + x

}
2x

= lim
x→0

− log(1 + x)

2x
= lim

x→0

{
− 1

2
· log(1 + x)

x

}
= − 1

2
· 1 = − 1

2

(5) lim
x→0

log(1 + x) + e−x − 1

sin x− x cosx
∗
= lim

x→0

1

1 + x
− e−x

cosx− {1 · cos x+ x · (− sinx)}
= lim

x→0

1

1 + x
− 1

ex

x sin x

= lim
x→0

ex − 1− x

x(1 + x)ex sin x
= lim

x→0

{
1

(1 + x)ex
· x

sin x
· ex − 1− x

x2

}
=

1

1 · 1
· 1 · lim

x→0

ex − 1− x

x2

= lim
x→0

ex − 1− x

x2

∗
= lim

x→0

ex − 1

2x
= lim

x→0

(
1

2
· ex − 1

x

)
=

1

2
· 1 =

1

2
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(6) lim
x→0

log(1 + x)− sinx

x2

∗
= lim

x→0

1

1 + x
− cosx

2x
= lim

x→0

1− (1 + x) cos x

2x(1 + x)

= lim
x→0

{
1

2(1 + x)
· 1− (1 + x) cos x

x

}
=

1

2
lim
x→0

1− (1 + x) cosx

x

∗
=

1

2
lim
x→0

−{1 · cosx+ (1 + x) · (− sinx)}
1

=
1

2
lim
x→0

{− cos x+ (1 + x) sin x} =
1

2
·(−1) = − 1

2

※ lim
x→0

1− (1 + x) cos x

x
= lim

x→0

(
1− cosx

x2
· x− cos x

)
=

1

2
· 0− 1 = −1

と計算することもできる．

(7) lim
x→0

x2 + 2 log(cosx)

x2 sin2 x
= lim

x→0

{( x

sinx

)2
· x2 + 2 log(cosx)

x4

}
= 12 · lim

x→0

x2 + 2 log(cosx)

x4

= lim
x→0

x2 + 2 log(cos x)

x4

∗
= lim

x→0

2x+ 2 · − sinx

cos x
4x3

= lim
x→0

x− tanx

2x3
= lim

x→0

(
− 1

2
· tanx− x

x3

)
(3)
= − 1

2
· 1

3
= − 1

6

(8) lim
x→0

(
1

x2
− 1

x tanx

)
= lim

x→0

tanx− x

x2 tanx
= lim

x→0

(
x

tanx
· tanx− x

x3

)
(3)
= 1 · 1

3
=

1

3

(9) lim
x→0

(
1

x2
− x

tan3 x

)
= lim

x→0

tan3 x− x3

x2 tan3 x
= lim

x→0

{( x

tanx

)3
· tan3 x− x3

x5

}
= lim

x→0

{( x

tanx

)3
· (tan x− x)(tan2 x+ x tanx+ x2)

x5

}

= lim
x→0

[( x

tanx

)3
·

{(
tanx

x

)2

+
tanx

x
+ 1

}
· tanx− x

x3

]
(3)
= 13 · (12 + 1 + 1) · 1

3
= 1

(10) lim
x→0

(
1

x sin x
− 1

x2

)
= lim

x→0

x− sin x

x2 sinx
= lim

x→0

(
x

sin x
· x− sin x

x3

)
(2)
= 1 · 1

6
=

1

6

(11) lim
x→0

(
1

sin2 x
− 1

x2

)
= lim

x→0

x2 − sin2 x

x2 sin2 x
= lim

x→0

{( x

sin x

)2
· x2 − sin2 x

x4

}
= lim

x→0

{( x

sinx

)2
· (x+ sin x)(x− sinx)

x4

}
= lim

x→0

{( x

sin x

)2
·
(
1 +

sin x

x

)
· x− sin x

x3

}
(2)
= 12 · (1 + 1) · 1

6
=

1

3

(12) lim
x→0

(
x

sin3 x
− 1

x2

)
= lim

x→0

x3 − sin3 x

x2 sin3 x
= lim

x→0

{( x

sin x

)3
· x3 − sin3 x

x5

}
= lim

x→0

{( x

sinx

)3
· (x− sin x)(x2 + x sin x+ sin2 x)

x5

}

= lim
x→0

[( x

sinx

)3
·

{
1 +

sinx

x
+

(
sinx

x

)2
}

· x− sin x

x3

]
(2)
= 13 · (1 + 1 + 12) · 1

6
=

1

2

(13) lim
x→0

1

x

(
ex + 1

ex − 1
− 2

x

)
= lim

x→0

x(ex + 1)− 2(ex − 1)

x2(ex − 1)
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= lim
x→0

{
x

ex − 1
· x(ex + 1)− 2(ex − 1)

x3

}
= 1 · lim

x→0

x(ex + 1)− 2(ex − 1)

x3

= lim
x→0

x(ex + 1)− 2(ex − 1)

x3

∗
= lim

x→0

{1 · (ex + 1) + x · ex} − 2ex

3x2
= lim

x→0

(x− 1)ex + 1

3x2

∗
= lim

x→0

1 · ex + (x− 1) · ex

6x
= lim

x→0

xex

6x
= lim

x→0

ex

6
=

1

6

(14) 0 < x <
π

2
のとき，sinx > 0 であるから

(sinx)x = elog(sinx)x = ex log(sinx)

ここで

lim
x→+0

x log(sin x) = lim
x→+0

log(sin x)
1

x

∗
= lim

x→+0

cosx

sinx

− 1

x2

= lim
x→+0

(
− x

tanx
· x
)
= −1 · 0 = 0

であるから，（指数関数の連続性より）

lim
x→+0

(sinx)x = lim
x→+0

ex log(sinx) = e0 = 1

(15) − π

2
< x <

π

2
のとき，cosx > 0 であるから

(cosx)
1
x2 = elog(cosx)

1
x2 = e

log(cos x)

x2

ここで

lim
x→0

log(cosx)

x2

∗
= lim

x→0

− sin x

cosx
2x

= lim
x→0

(
− 1

2
· tanx

x

)
= − 1

2
· 1 = − 1

2

であるから，（指数関数の連続性より）

lim
x→0

(cosx)
1
x2 = lim

x→0
e

log(cos x)

x2 = e−
1
2 =

1√
e

(16) 0 < x <
π

2
のとき，sinx > 0 であるから

(sinx)
1

log x = elog(sinx)
1

log x
= e

log(sin x)
log x

ここで

lim
x→+0

log(sin x)

log x
∗
= lim

x→+0

cos x

sin x
1

x

= lim
x→+0

x

tanx
= 1

であるから，（指数関数の連続性より）

lim
x→+0

(sinx)
1

log x = lim
x→+0

e
log(sin x)

log x = e1 = e
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★逆三角関数

(1) sin :
[
− π

2
,
π

2

]
−→ [−1, 1] の逆関数を arcsin（アークサイン）で表す．

(2) cos : [0, π] −→ [−1, 1] の逆関数を arccos （アークコサイン）で表す．

(3) tan :
(
− π

2
,
π

2

)
−→ R の逆関数を arctan（アークタンジェント）で表す．

※ arcsin
1√
2
とは，sin θ =

1√
2

(
− π

2
<= θ <=

π

2

)
を満たす角 θ のことである．角 θ を

− π

2
<= θ <=

π

2
から見つけなければいけないことに注意する．arccos, arctan のときは，角 θ

を 0 <= θ <= π, − π

2
< θ <

π

2
からそれぞれ見つけなければいけない．

【問題 1.5】 　
次の値を求めよ．

(1) arcsin

√
3

2
(2) arcsin

(
− 1

2

)
(3) arcsin(−1) (4) arccos

1√
2

(5) arccos

(
− 1

2

)
(6) arccos

(
−

√
3

2

)

(7) arctan
1√
3

(8) arctan(−1)

(9) sin

(
arctan

12

5

)
(10) tan

(
arccos

1

8

)
(11) arccos

(
sin

π

5

)
(12) arctan

(
tan

4

7
π

)
(13) arctan

2

9
+ arctan

7

11
(14) arctan

3

4
+ arctan

1

8

(15) 2 arctan
1

2
− arctan

1

5
+ arctan

1

18

解答

(1) sin θ =

√
3

2
をみたす角 θ を − π

2
<= θ <=

π

2
の範囲から見つけて　 arcsin

√
3

2
=

π

3

(2) sin θ = − 1

2
をみたす角 θ を − π

2
<= θ <=

π

2
の範囲から見つけて　 arcsin

(
− 1

2

)
= − π

6

(3) sin θ = −1 をみたす角 θ を − π

2
<= θ <=

π

2
の範囲から見つけて　 arcsin(−1) = − π

2

(4) cos θ =
1√
2
をみたす角 θ を 0 <= θ <= π の範囲から見つけて　 arccos

1√
2

=
π

4

(5) cos θ = − 1

2
をみたす角 θ を 0 <= θ <= π の範囲から見つけて　 arccos

(
− 1

2

)
=

2

3
π
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(6) cos θ = −
√
3

2
をみたす角 θ を 0 <= θ <= π の範囲から見つけて　 arccos

(
−

√
3

2

)
=

5

6
π

(7) tan θ =
1√
3
をみたす角 θ を − π

2
< θ <

π

2
の範囲から見つけて　 arctan

1√
3

=
π

6

(8) tan θ = −1 をみたす角 θ を − π

2
< θ <

π

2
の範囲から見つけて　 arctan(−1) = − π

4

(9) arctan
12

5
= α とおくと　 tanα =

12

5

(
0 < α <

π

2

)
底辺が 5，高さが 12 の直角三角形の斜辺は 13 であるから　 sinα =

12

13

よって　 sin

(
arctan

12

5

)
=

12

13

(10) arccos
1

8
= α とおくと　 cosα =

1

8

(
0 < α <

π

2

)
斜辺が 8，底辺が 1 の直角三角形の高さは 3

√
7 であるから　 tanα = 3

√
7

よって　 tan

(
arccos

1

8

)
= 3

√
7

(11) sin
π

5
= cos

( π

2
− π

5

)
= cos

3

10
π であって，

3

10
π は [0, π] に入る．

よって　 arccos
(
sin

π

5

)
=

3

10
π

(12) tan
4

7
π = tan

(
4

7
π − π

)
= tan

(
− 3

7
π

)
であって，− 3

7
π は

(
− π

2
,
π

2

)
に入る．

よって　 arctan

(
tan

4

7
π

)
= − 3

7
π

※
4

7
π は

(
− π

2
,
π

2

)
に入らないから，arctan

(
tan

4

7
π

)
=

4

7
π とはならないことに注意する．

(13) arctan
2

9
= α, arctan

7

11
= β とおくと　 tanα =

2

9
, tan β =

7

11

(
0 < α, β <

π

4

)
このとき

tan(α + β) =

2

9
+

7

11

1− 2

9
· 7

11

=
22 + 63

99− 14
=

85

85
= 1

ここで，0 < α, β <
π

4
のとき 0 < α + β <

π

2
であるから　 α + β =

π

4

よって　 arctan
2

9
+ arctan

7

11
=

π

4

(14) arctan
3

4
= α, arctan

1

8
= β とおくと　 tanα =

3

4
, tan β =

1

8

(
0 < α, β <

π

4

)
このとき

tan(α + β) =

3

4
+

1

8

1− 3

4
· 1

8

=
24 + 4

32− 3
=

28

29
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ここで，0 < α, β <
π

4
のとき 0 < α + β <

π

2
であるから　 α + β = arctan

28

29

よって　 arctan
3

4
+ arctan

1

8
= arctan

28

29

(15) arctan
1

2
= α, arctan

1

5
= β, arctan

1

18
= γ とおくと

tanα =
1

2
, tan β =

1

5
, tan γ =

1

18

(
0 < α, β, γ <

π

4

)
このとき

tan 2α =
2 · 1

2

1−
(

1

2

)2 =
4

4− 1
=

4

3

tan(2α− β) =

4

3
− 1

5

1 +
4

3
· 1

5

=
20− 3

15 + 4
=

17

19

tan(2α− β + γ) =

17

19
+

1

18

1− 17

19
· 1

18

=
306 + 19

342− 17
=

325

325
= 1

ここで，0 < α, β, γ <
π

4
のとき − π

4
< 2α− β + γ <

3

4
π であるから　 2α− β + γ =

π

4

よって　 2 arctan
1

2
− arctan

1

5
+ arctan

1

18
=

π

4

★逆三角関数の導関数

(1) (arcsinx)′ =
1√

1− x2
(−1 < x < 1)

(2) (arccosx)′ = − 1√
1− x2

(−1 < x < 1)

(3) (arctanx)′ =
1

1 + x2
(x ∈ R)

【問題 1.6】 　
次の関数を微分せよ．

(1) arctan ex (2) arctan
2

x

(3) arcsin
√
x (4)

√
x arctan

√
x

(5) arctan
√
x2 − 1 (6) arctan

3 + x

1− 3x

(7) arctan
2x+ 5

5x− 2
(8) arctan

3x+ 4

4x− 3
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(9) arctan
2x+ 5

x+ 1
(10) arctan

√
1− x

x

(11) arctan

√
x+ 5

x+ 1
(12) arctan

√
3x− 2

2x+ 1

(13) arctan

√
3x+ 4

2x− 3
(14) arctan

√
2x+ 7

5x− 1

(15) arctan

√
3x− 4

7x+ 5
(16) arctan

√
5x+ 11

2x− 3

(17) arctan

√
7x− 9

2x+ 1
(18) arctan

√
2x− 9

7x+ 11

(19)
arcsinx

arccosx
(20)

arccosx√
1− x2

(21)
x arcsinx√

1− x2
(22) arctan(x+

√
x2 + 1 )

(23) arctan
2x

x2 − 1
(24) arctan

1− 2x− x2

1 + 2x− x2

(25) arcsin
√

1− x2 (26) arccos
1√

x2 + 1

(27) arccos
2x

x2 + 1
(28) arctan

√
1− cos x

1 + cos x

解答

(1) (arctan ex)′ =
1

1 + (ex)2
· ex =

ex

1 + e2x

(2)

(
arctan

2

x

)′

=
1

1 +

(
2

x

)2 ·
(
− 2

x2

)
= − 2

x2 + 4

(3) (arcsin
√

x )
′
=

1√
1− (

√
x )2

· 1

2
√
x

=
1

2
√

x(1− x)

(4) (
√
x arctan

√
x )

′
=

1

2
√

x
· arctan

√
x +

√
x ·
{

1

1 + (
√
x )2

· 1

2
√

x

}
=

arctan
√
x

2
√

x
+

1

2(1 + x)
=

(1 + x) arctan
√
x +

√
x

2(1 + x)
√

x

(5)
(
arctan

√
x2 − 1

)′
=

1

1 + (
√

x2 − 1 )2
· 2x

2
√
x2 − 1

=
1

x2
· x√

x2 − 1
=

1

x
√

x2 − 1

(6)

(
arctan

3 + x

1− 3x

)′

=
1

1 +

(
3 + x

1− 3x

)2 · 1 · (1− 3x)− (3 + x) · (−3)

(1− 3x)2

=
(1− 3x)2

(1− 3x)2 + (3 + x)2
· 10

(1− 3x)2
=

10

10(1 + x2)
=

1

1 + x2
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(7)

(
arctan

2x+ 5

5x− 2

)′

=
1

1 +

(
2x+ 5

5x− 2

)2 · 2 · (5x− 2)− (2x+ 5) · 5
(5x− 2)2

=
(5x− 2)2

(5x− 2)2 + (2x+ 5)2
· −29

(5x− 2)2
=

−29

29(1 + x2)
= − 1

1 + x2

(8)

(
arctan

3x+ 4

4x− 3

)′

=
1

1 +

(
3x+ 4

4x− 3

)2 · 3 · (4x− 3)− (3x+ 4) · 4
(4x− 3)2

=
(4x− 3)2

(4x− 3)2 + (3x+ 4)2
· −25

(4x− 3)2
=

−25

25(1 + x2)
= − 1

1 + x2

(9)

(
arctan

2x+ 5

x+ 1

)′

=
1

1 +

(
2x+ 5

x+ 1

)2 · 2 · (x+ 1)− (2x+ 5) · 1
(x+ 1)2

=
(x+ 1)2

(x+ 1)2 + (2x+ 5)2
· −3

(x+ 1)2
=

−3

5x2 + 22x+ 26

(10)

(
arctan

√
1− x

x

)′

=
1

1 +

(√
1− x

x

)2 ·


1

2

√
1− x

x

· −1 · x− (1− x) · 1
x2


=

x

x+ (1− x)
· 1

2

√
x

1− x
· −1

x2
= − 1

2x

√
x

1− x

(11)

(
arctan

√
x+ 5

x+ 1

)′

=
1

1+

(√
x+ 5

x+ 1

)2 ·


1

2

√
x+ 5

x+ 1

· 1 · (x+ 1)− (x+ 5) · 1
(x+ 1)2


=

x+ 1

(x+ 1) + (x+ 5)
· 1

2

√
x+ 1

x+ 5
· −4

(x+ 1)2
=

x+ 1

2(x+ 3)
· −2

(x+ 1)2

√
x+ 1

x+ 5

= − 1

(x+ 3)(x+ 1)

√
x+ 1

x+ 5

※

√
x+ 5

x+ 1
を

√
x+ 5√
x+ 1

とはできないし，答えの分母の x + 1 をルートの中に入れることも

できないことに注意する．

(12)

(
arctan

√
3x− 2

2x+ 1

)′

=
1

1 +

(√
3x− 2

2x+ 1

)2 ·


1

2

√
3x− 2

2x+ 1

· 3 · (2x+ 1)− (3x− 2) · 2
(2x+ 1)2


=

2x+ 1

(2x+ 1) + (3x− 2)
· 1

2

√
2x+ 1

3x− 2
· 7

(2x+ 1)2
=

2x+ 1

5x− 1
· 7

2(2x+ 1)2

√
2x+ 1

3x− 2
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=
7

2(5x− 1)(2x+ 1)

√
2x+ 1

3x− 2

※

√
3x− 2

2x+ 1
を

√
3x− 2√
2x+ 1

とはできないし，答えの分母の 2x+ 1 をルートの中に入れること

もできないことに注意する．

(13)

(
arctan

√
3x+ 4

2x− 3

)′

=
1

1 +

(√
3x+ 4

2x− 3

)2 ·


1

2

√
3x+ 4

2x− 3

· 3 · (2x− 3)− (3x+ 4) · 2
(2x− 3)2


=

2x− 3

(2x− 3) + (3x+ 4)
· 1

2

√
2x− 3

3x+ 4
· −17

(2x− 3)2
=

2x− 3

5x+ 1
· −17

2(2x− 3)2

√
2x− 3

3x+ 4

=
−17

2(5x+ 1)(2x− 3)

√
2x− 3

3x+ 4

※

√
3x+ 4

2x− 3
を

√
3x+ 4√
2x− 3

とはできないし，答えの分母の 2x− 3 をルートの中に入れること

もできないことに注意する．

(14)

(
arctan

√
2x+ 7

5x− 1

)′

=
1

1 +

(√
2x+ 7

5x− 1

)2 ·


1

2

√
2x+ 7

5x− 1

· 2 · (5x− 1)− (2x+ 7) · 5
(5x− 1)2


=

5x− 1

(5x− 1) + (2x+ 7)
· 1

2

√
5x− 1

2x+ 7
· −37

(5x− 1)2
=

5x− 1

7x+ 6
· −37

2(5x− 1)2

√
5x− 1

2x+ 7

=
−37

2(7x+ 6)(5x− 1)

√
5x− 1

2x+ 7

※

√
2x+ 7

5x− 1
を

√
2x+ 7√
5x− 1

とはできないし，答えの分母の 5x− 1 をルートの中に入れること

もできないことに注意する．

(15)

(
arctan

√
3x− 4

7x+ 5

)′

=
1

1 +

(√
3x− 4

7x+ 5

)2 ·


1

2

√
3x− 4

7x+ 5

· 3 · (7x+ 5)− (3x− 4) · 7
(7x+ 5)2


=

7x+ 5

(7x+ 5) + (3x− 4)
· 1

2

√
7x+ 5

3x− 4
· 43

(7x+ 5)2
=

7x+ 5

10x+ 1
· 43

2(7x+ 5)2

√
7x+ 5

3x− 4

=
43

2(10x+ 1)(7x+ 5)

√
7x+ 5

3x− 4

37



※

√
3x− 4

7x+ 5
を

√
3x− 4√
7x+ 5

とはできないし，答えの分母の 7x+ 5 をルートの中に入れること

もできないことに注意する．

(16)

(
arctan

√
5x+ 11

2x− 3

)′

=
1

1 +

(√
5x+ 11

2x− 3

)2 ·


1

2

√
5x+ 11

2x− 3

· 5 · (2x− 3)− (5x+ 11) · 2
(2x− 3)2


=

2x− 3

(2x− 3) + (5x+ 11)
· 1

2

√
2x− 3

5x+ 11
· −37

(2x− 3)2
=

2x− 3

7x+ 8
· −37

2(2x− 3)2

√
2x− 3

5x+ 11

=
−37

2(7x+ 8)(2x− 3)

√
2x− 3

5x+ 11

※

√
5x+ 11

2x− 3
を

√
5x+ 11√
2x− 3

とはできないし，答えの分母の 2x− 3 をルートの中に入れるこ

ともできないことに注意する．

(17)

(
arctan

√
7x− 9

2x+ 1

)′

=
1

1 +

(√
7x− 9

2x+ 1

)2 ·


1

2

√
7x− 9

2x+ 1

· 7 · (2x+ 1)− (7x− 9) · 2
(2x+ 1)2


=

2x+ 1

(2x+ 1) + (7x− 9)
· 1

2

√
2x+ 1

7x− 9
· 25

(2x+ 1)2
=

2x+ 1

9x− 8
· 25

2(2x+ 1)2

√
2x+ 1

7x− 9

=
25

2(9x− 8)(2x+ 1)

√
2x+ 1

7x− 9

※

√
7x− 9

2x+ 1
を

√
7x− 9√
2x+ 1

とはできないし，答えの分母の 2x+ 1 をルートの中に入れること

もできないことに注意する．

(18)

(
arctan

√
2x− 9

7x+ 11

)′

=
1

1 +

(√
2x− 9

7x+ 11

)2 ·


1

2

√
2x− 9

7x+ 11

· 2 · (7x+ 11)− (2x− 9) · 7
(7x+ 11)2


=

7x+ 11

(7x+ 11) + (2x− 9)
· 1

2

√
7x+ 11

2x− 9
· 85

(7x+ 11)2
=

7x+ 11

9x+ 2
· 85

2(7x+ 11)2

√
7x+ 11

2x− 9

=
85

2(9x+ 2)(7x+ 11)

√
7x+ 11

2x− 9
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※

√
2x− 9

7x+ 11
を

√
2x− 9√
7x+ 11

とはできないし，答えの分母の 7x + 11 をルートの中に入れる

こともできないことに注意する．

(19)

(
arcsinx

arccosx

)′

=

1√
1− x2

· arccosx− arcsinx · −1√
1− x2

(arccosx)2
=

arccosx+ arcsinx

(arccos x)2
√

1− x2

(20)

(
arccos x√
1− x2

)′

=

− 1√
1− x2

·
√
1− x2 − arccosx · −2x

2
√
1− x2

1− x2
=

−1 +
x arccosx√

1− x2

1− x2

=
−
√
1− x2 + x arccosx

(1− x2)
√

1− x2

(21)

(
x arcsin x√

1− x2

)′

=

(x arcsinx)′ ·
√
1− x2 − x arcsinx · −2x

2
√

1− x2

1− x2

=

(
1 · arcsinx+ x · 1√

1− x2

)
·
√

1− x2 +
x2 arcsin x√

1− x2

1− x2

=

√
1− x2 arcsinx+ x+

x2 arcsinx√
1− x2

1− x2
=

(1− x2) arcsinx+ x
√

1− x2 + x2 arcsinx

(1− x2)
√

1− x2

=
arcsinx+ x

√
1− x2

(1− x2)
√

1− x2

(22)
{
arctan(x+

√
x2 + 1 )

}′
=

1

1 + (x+
√

x2 + 1 )2
·
(
1 +

2x

2
√
x2 + 1

)
=

1

1 + (x2 + 2x
√

x2 + 1 + x2 + 1)
·
√

x2 + 1 + x√
x2 + 1

=
1

2(x2 + 1) + 2x
√

x2 + 1
·
√
x2 + 1 + x√
x2 + 1

=
1

2
√

x2 + 1 (
√
x2 + 1 + x)

·
√

x2 + 1 + x√
x2 + 1

=
1

2
√

x2 + 1
· 1√

x2 + 1
=

1

2(x2 + 1)

(23)

(
arctan

2x

x2 − 1

)′

=
1

1 +

(
2x

x2 − 1

)2 · 2 · (x2 − 1)− 2x · 2x
(x2 − 1)2

=
(x2 − 1)2

(x2 − 1)2 + (2x)2
· −2(x2 + 1)

(x2 − 1)2
=

−2(x2 + 1)

(x2 + 1)2
=

−2

x2 + 1

(24)

(
arctan

1− 2x− x2

1 + 2x− x2

)′

=
1

1 +

(
1− 2x− x2

1 + 2x− x2

)2 · (−2− 2x) · (1 + 2x− x2)− (1− 2x− x2) · (2− 2x)

(1 + 2x− x2)2

=
(1 + 2x− x2)2

(1 + 2x− x2)2 + (1− 2x− x2)2
· −4(1 + x2)

(1 + 2x− x2)2
=

−4(1 + x2)

2(1 + x2)2
=

−2

1 + x2
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(25)
(
arcsin

√
1− x2

)′
=

1√
1− (

√
1− x2 )2

· −2x

2
√
1− x2

=
1√
x2

· −x√
1− x2

=
−x

|x|
√

1− x2

※
√
x2 = x とはならないことに注意する．

(26)

(
arccos

1√
x2 + 1

)′

= − 1√
1−

(
1√

x2 + 1

)2
·

−

2x

2
√
x2 + 1

x2 + 1



= −

√
x2 + 1

(x2 + 1)− 1
· −x

(x2 + 1)
√

x2 + 1
= −

√
x2 + 1

x2
· −x

(x2 + 1)
√

x2 + 1

= −
√
x2 + 1√
x2

· −x

(x2 + 1)
√

x2 + 1
=

x

|x|(x2 + 1)

※
√
x2 = x とはならないことに注意する．

(27)

(
arccos

2x

x2 + 1

)′

= − 1√
1−

(
2x

x2 + 1

)2
· 2 · (x2 + 1)− 2x · 2x

(x2 + 1)2

= −

√
(x2 + 1)2

(x2 + 1)2 − (2x)2
· −2(x2 − 1)

(x2 + 1)2
= − x2 + 1√

(x2 − 1)2
· −2(x2 − 1)

(x2 + 1)2
=

2(x2 − 1)

|x2 − 1|(x2 + 1)

※
√

(x2 − 1)2 = x2 − 1 とはならないことに注意する．

(28)

(
arctan

√
1− cosx

1 + cos x

)′

=
1

1 +

(√
1− cos x

1 + cos x

)2 ·


1

2

√
1− cos x

1 + cosx

· sin x · (1 + cos x)− (1− cosx) · (− sin x)

(1 + cos x)2


=

1 + cosx

(1 + cos x) + (1− cosx)
· 1

2

√
1 + cos x

1− cos x
· 2 sin x

(1 + cos x)2

=
1 + cos x

2
· sin x

(1 + cos x)2

√
1 + cosx

1− cos x
=

sin x

2(1 + cosx)

√
1 + cos x

1− cos x

=
sin x

2

√
1 + cos x

(1 + cos x)2(1− cos x)
=

sinx

2

√
1

1− cos2 x
=

sinx

2
√

sin2 x
=

sin x

2| sinx|

※
√
sin2 x = sinx とはならないことに注意する．

【問題 1.7】 　
L’Hospitalの定理を用いて，次の極限値を求めよ．ただし，不定形であることは述べなくてよい．

(1) lim
x→0

arctanx

x
(2) lim

x→0

x− arcsinx

x− arctanx

(3) lim
x→1−0

1− x

(arccosx)2
(4) lim

x→∞

(
2

π
arctanx

)x
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解答

(1) lim
x→0

arctanx

x
∗
= lim

x→0

1

1 + x2

1
= lim

x→0

1

1 + x2
= 1

(2) lim
x→0

x− arcsinx

x− arctanx
∗
= lim

x→0

1− 1√
1− x2

1− 1

1 + x2

= lim
x→0

(1 + x2)(
√
1− x2 − 1)√

1− x2 {(1 + x2)− 1}

= lim
x→0

(1 + x2)(
√

1− x2 − 1)

x2
√
1− x2

= lim
x→0

(1 + x2){(1− x2)− 1}
x2
√
1− x2 (

√
1− x2 + 1)

= lim
x→0

−x2(1 + x2)

x2
√
1− x2 (

√
1− x2 + 1)

= lim
x→0

−(1 + x2)√
1− x2 (

√
1− x2 + 1)

=
−1

1 · (1 + 1)
= − 1

2

(3) lim
x→1−0

1− x

(arccosx)2
∗
= lim

x→1−0

−1

2 arccosx ·
(
− 1√

1− x2

) = lim
x→1−0

√
1− x2

2 arccos x

∗
= lim

x→1−0

−2x

2
√

1− x2

2 ·
(
− 1√

1− x2

) = lim
x→1−0

x

2
=

1

2

(4) x > 0 のとき，arctanx > 0 であるから(
2

π
arctanx

)x

= elog(
2
π

arctanx)x = ex log( 2
π

arctanx)

ここで

lim
x→∞

x log

(
2

π
arctanx

)
= lim

x→∞

log

(
2

π
arctanx

)
1

x

∗
= lim

x→∞

1
2
π
arctanx

·
2
π

1 + x2

− 1

x2

= lim
x→∞

−x2

(1 + x2) arctanx
= lim

x→∞

−1(
1

x2
+ 1

)
arctanx

=
−1

1 · π

2

= − 2

π

であるから，（指数関数の連続性より）

lim
x→∞

(
2

π
arctanx

)x

= lim
x→∞

ex log( 2
π

arctanx) = e−
2
π

【問題 1.8】 　
次の問いに答えよ．

(1) f(x) = (arctan x)2 のとき (1 + x2)f ′′(x) + 2xf ′(x) を簡単にせよ．

(2) f(x) = arcsin x arccos x のとき (1− x2)f ′′(x)− xf ′(x) を簡単にせよ．

(3) f(x) =
√
1− x2 arcsinx のとき (1− x2)f ′′(x)− xf ′(x) + f(x) を簡単にせよ．
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解答

(1) f ′(x) = 2 arctan x · 1

1 + x2

分母をはらうと

(1 + x2)f ′(x) = 2 arctan x

両辺を x で微分すると

2x · f ′(x) + (1 + x2) · f ′′(x) =
2

1 + x2

よって

(1 + x2)f ′′(x) + 2xf ′(x) =
2

1 + x2

※ f ′(x) =
2 arctanx

1 + x2
と f ′′(x) =

2− 4x arctanx

(1 + x2)2
を求めてから代入してもよい．

(2) f ′(x) =
1√

1− x2
· arccosx+ arcsinx ·

(
− 1√

1− x2

)
分母をはらうと
√
1− x2 f ′(x) = arccos x− arcsinx

両辺を x で微分すると
−2x

2
√
1− x2

· f ′(x) +
√

1− x2 · f ′′(x) = − 1√
1− x2

− 1√
1− x2

−xf ′(x)√
1− x2

+
√
1− x2 f ′′(x) = − 2√

1− x2

分母をはらうと

−xf ′(x) + (1− x2)f ′′(x) = −2

よって

(1− x2)f ′′(x)− xf ′(x) = −2

※ f ′(x) =
arccosx− arcsin x√

1− x2
と f ′′(x) =

−2
√
1− x2 + x(arccosx− arcsinx)

(1− x2)
√
1− x2

を求めてから

代入してもよい．

(3) f ′(x) =
−2x

2
√

1− x2
· arcsinx+

√
1− x2 · 1√

1− x2

両辺に 1− x2 をかけると

(1− x2)f ′(x) = −x
√
1− x2 arcsinx+ 1− x2

(1− x2)f ′(x) = −xf(x) + 1− x2

両辺を x で微分すると

−2x · f ′(x) + (1− x2) · f ′′(x) = −{1 · f(x) + x · f ′(x)} − 2x

よって

(1− x2)f ′′(x)− xf ′(x) + f(x) = −2x

※ f ′(x) =
−x arcsinx√

1− x2
+ 1 と f ′′(x) =

− arcsin x− x
√

1− x2

(1− x2)
√
1− x2

を求めてから代入してもよい．

42



★高次導関数
開区間 I で微分可能な関数 f の導関数 f ′ が再び I で微分可能なとき，(f ′)′ を f の第 2 次導
関数といい，f ′′ で表す．一般に，f を n 回微分した関数を f の第 n 次導関数といい，f (n) で
表す．また，f (0) = f と定める．そして，f (k) (k = 0, 1, . . . , n) がすべて I で連続であるとき，
f は I で Cn 級であるという．

例
(1) (ex)(n) = ex (n = 0, 1, 2, . . . )

(2) (sinx)(n) = sin
(
x+

nπ

2

)
(n = 0, 1, 2, . . . )

※ (sinx)(2n) = (−1)n sinx, (sinx)(2n+1) = (−1)n cos x (n = 0, 1, 2, . . . )

(3) (cosx)(n) = cos
(
x+

nπ

2

)
(n = 0, 1, 2, . . . )

※ (cosx)(2n) = (−1)n cosx, (cosx)(2n+1) = (−1)n+1 sin x (n = 0, 1, 2, . . . )

(4) {log(1 + x)}(n) = (−1)n−1(n− 1)!(1 + x)−n (n ∈ N)

(5) {(1 + x)α}(n) = α(α− 1)(α− 2) · · · (α− n+ 1)(1 + x)α−n (n ∈ N)

★
ラ イ プ ニッツ

Leibniz の公式
f, g が開区間 I で n 回微分可能なとき，積 fg も I で n 回微分可能で

　　　 {f(x)g(x)}(n) =
n∑

k=0

nCkf
(n−k)(x)g(k)(x) (x ∈ I)

が成り立つ．

証明
(i) n = 1 のとき，主張は積の微分法則に他ならないから成り立つ．

(ii) n = m (m ∈ N) のとき主張が成り立つと仮定する．
f, g が I で m+ 1 回微分可能なとき，f, g は I で m 回微分可能でもあるから，帰納法の仮定
より，積 fg は I で m 回微分可能で

　　　 {f(x)g(x)}(m) =
m∑
k=0

mCkf
(m−k)(x)g(k)(x) (x ∈ I)

が成り立つ．この右辺はもう 1 回微分できるから，積 fg は I で m+ 1 回微分可能で，x ∈ I

に対して

　　　

{f(x)g(x)}(m+1)

=

{
m∑
k=0

mCkf
(m−k)(x)g(k)(x)

}′

=
m∑
k=0

mCk

{
f (m−k+1)(x)g(k)(x) + f (m−k)(x)g(k+1)(x)

}
=

m∑
k=0

mCkf
(m−k+1)(x)g(k)(x) +

m∑
k=0

mCkf
(m−k)(x)g(k+1)(x)
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=
m∑
k=0

mCkf
(m+1−k)(x)g(k)(x) +

m+1∑
k=1

mCk−1f
(m−(k−1))(x)g(k)(x)

= f (m+1)(x)g(0)(x) +
m∑
k=1

mCkf
(m+1−k)(x)g(k)(x)

　　　　　　　　　　+
m∑
k=1

mCk−1f
(m+1−k)(x)g(k)(x) + f (0)(x)g(m+1)(x)

= f (m+1)(x)g(0)(x) +
m∑
k=1

(mCk + mCk−1)f
(m+1−k)(x)g(k)(x) + f (0)(x)g(m+1)(x)

= f (m+1)(x)g(0)(x) +
m∑
k=1

m+1Ckf
(m+1−k)(x)g(k)(x) + f (0)(x)g(m+1)(x)

=
m+1∑
k=0

m+1Ckf
(m+1−k)(x)g(k)(x)

よって，n = m+ 1 のときも主張が成り立つ．
以上 (i),(ii) より，n ∈ N に対して主張が成り立つ．

※対称性より

　　　 {f(x)g(x)}(n) =
n∑

k=0

nCkf
(k)(x)g(n−k)(x) (x ∈ I)

でもよい．

【問題 1.9】 　
f(x) = arctan x のとき，f (n)(0) を求めよ．

解答

f ′(x) =
1

1 + x2
であるから　 (1 + x2)f ′(x) = 1

この両辺を n 回微分すると

　　　 {(1 + x2)f ′(x)}(n) = (1)(n)

　　　
n∑

k=0

nCk(1 + x2)(k){f ′(x)}(n−k) = 0

　　　 1 · (1 + x2) · f (n+1)(x)︸ ︷︷ ︸
k=0

+n · 2x · f (n)(x)︸ ︷︷ ︸
k=1

+
n(n− 1)

2 · 1
· 2 · f (n−1)(x)︸ ︷︷ ︸
k=2

= 0

　　　 (1 + x2)f (n+1)(x) + 2nxf (n)(x) + n(n− 1)f (n−1)(x) = 0

x = 0 を代入すると

　　　 f (n+1)(0) + n(n− 1)f (n−1)(0) = 0

であるから

　　　 f (n+1)(0) = −n(n− 1)f (n−1)(0)　…… 1⃝
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さて，f (0)(0) = f(0) = 0, f (1)(0) = f ′(0) = 1 である．あとは， 1⃝ を用いて次々と求める．

1⃝ で n = 1 とすると　 f (2)(0) = −1 · 0 · f (0)(0) = −1 · 0 · 0 = 0

1⃝ で n = 2 とすると　 f (3)(0) = −2 · 1 · f (1)(0) = −2 · 1 · 1 = −2!

1⃝ で n = 3 とすると　 f (4)(0) = −3 · 2 · f (2)(0) = −3 · 2 · 0 = 0

1⃝ で n = 4 とすると　 f (5)(0) = −4 · 3 · f (3)(0) = −4 · 3 · (−2!) = 4!

1⃝ で n = 5 とすると　 f (6)(0) = −5 · 4 · f (4)(0) = −5 · 4 · 0 = 0

1⃝ で n = 6 とすると　 f (7)(0) = −6 · 5 · f (5)(0) = −6 · 5 · 4! = −6!

同様に計算すれば

　　　 f (2n)(0) = 0, f (2n+1)(0) = (−1)n(2n)! (n = 0, 1, 2, . . . )

となることがわかる．

【問題 1.10】 　
f(x) = ex

√
1− x のとき，f (0)(0), f (1)(0), f (2)(0), f (3)(0), f (4)(0), f (5)(0) を求めよ．

解答
f (0)(0) = f(0) = 1 である．また

　　　 f ′(x) = ex ·
√

1− x + ex · −1

2
√

1− x
=

(1− 2x)ex

2
√

1− x
　…… 1⃝

より f (1)(0) = f ′(0) =
1

2
である．

次に， 1⃝ より

　　　 (2− 2x)f ′(x) = (1− 2x)f(x)

が成り立つことがわかるから，この両辺を n 回微分すると

　　　 {(2− 2x)f ′(x)}(n) = {(1− 2x)f(x)}(n)

　　　
n∑

k=0

nCk(2− 2x)(k){f ′(x)}(n−k) =
n∑

k=0

nCk(1− 2x)(k){f(x)}(n−k)

　　　 1 · (2− 2x) · f (n+1)(x)︸ ︷︷ ︸
k=0

+n · (−2) · f (n)(x)︸ ︷︷ ︸
k=1

= 1 · (1− 2x) · f (n)(x)︸ ︷︷ ︸
k=0

+n · (−2) · f (n−1)(x)︸ ︷︷ ︸
k=1

　　　 (2− 2x)f (n+1)(x)− 2nf (n)(x) = (1− 2x)f (n)(x)− 2nf (n−1)(x)

x = 0 を代入すると

　　　 2f (n+1)(0)− 2nf (n)(0) = f (n)(0)− 2nf (n−1)(0)

であるから

　　　 f (n+1)(0) =
1

2

{
(2n+ 1)f (n)(0)− 2nf (n−1)(0)

}
　…… 2⃝

あとは 2⃝ を用いて次々と求める．

1⃝ で n = 1 とすると　 f (2)(0) =
1

2

(
3 · 1

2
− 2 · 1

)
= − 1

4
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1⃝ で n = 2 とすると　 f (3)(0) =
1

2

{
5 ·
(
− 1

4

)
− 4 · 1

2

}
= − 13

8

1⃝ で n = 3 とすると　 f (4)(0) =
1

2

{
7 ·
(
− 13

8

)
− 6 ·

(
− 1

4

)}
= − 79

16

1⃝ で n = 4 とすると　 f (5)(0) =
1

2

{
9 ·
(
− 79

16

)
− 8 ·

(
− 13

8

)}
= − 503

32

★
テ イ ラ ー

Taylor の定理
f が開区間 I で n 回微分可能で，a, x ∈ I (x ̸= a) のとき

　　　 f(x) =
n−1∑
k=0

f (k)(a)

k!
(x− a)k +

f (n)(a+ θ(x− a))

n!
(x− a)n

をみたす θ (0 < θ < 1) が存在する．

※ f(x)−
n−1∑
k=0

f (k)(a)

k!
(x− a)k を剰余項といい，Rn(x) で表す．この場合

　　　Rn(x) =
f (n)(a+ θ(x− a))

n!
(x− a)n (0 < θ < 1)

であり，これを
ラ グ ラ ン ジュ

Lagrange の剰余項という．また

　　　Rn(x) =
(1− θ)n−1f (n)(a+ θ(x− a))

(n− 1)!
(x− a)n (0 < θ < 1)

を Cauchy の剰余項といい，p > 0 として

　　　Rn(x) =
(1− θ)n−pf (n)(a+ θ(x− a))

p(n− 1)!
(x− a)n (0 < θ < 1)

を
ロッシュ

Roche-
シュレ ミ ル ヒ

Schlömilch の剰余項という．Roche-Schlömilch の剰余項において，p = 1 のとき
が Cauchy の剰余項，p = n のときが Lagrange の剰余項である．剰余項の形は他にもいろい
ろある．

定理
f が開区間 I で無限回微分可能で，a ∈ I のとき， lim

n→∞
Rn(x) = 0 をみたす x ∈ I に対しては

　　　 f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

と級数で表せる．

※これを f の a を中心とする Taylor 展開という．特に，a = 0 のときを
マ ク ロ ー リ ン

Maclaurin 展開と
いう．

★代表的な関数の Maclaurin 展開

(1) ex = 1 + x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+ · · · (x ∈ R)

(2) sinx = x− x3

6
+

x5

120
− x7

5040
+

x9

362880
− · · · (x ∈ R)
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(3) cosx = 1− x2

2
+

x4

24
− x6

720
+

x8

40320
− · · · (x ∈ R)

(4) log(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · (−1 < x <= 1)

(5) (1 + x)α = 1 +

(
α

1

)
x+

(
α

2

)
x2 +

(
α

3

)
x3 + · · · (−1 < x < 1)

ただし，α ̸= 0, 1, 2, 3, . . . とし，

　　　

(
α

n

)
=

α(α− 1)(α− 2) · · · (α− n+ 1)

n!

は一般二項係数である．

(6)
√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5 − · · · (−1 <= x <= 1)

(7)
1√
1 + x

= 1− 1

2
x+

3

8
x2 − 5

16
x3 +

35

128
x4 − 63

256
x5 + · · · (−1 < x <= 1)

(8)
1

1 + x
= 1− x+ x2 − x3 + x4 − x5 + · · · (−1 < x < 1)

(9) arctan x = x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · · (−1 <= x <= 1)

(10) arcsinx = x+
1

6
x3 +

3

40
x5 +

5

112
x7 +

35

1152
x9 + · · · (−1 <= x <= 1)

【問題 1.11】 　
次の関数の Maclaurin 展開の 4 次以下の項を求めよ．ただし，係数は既約分数にすること．ま
た，展開できる範囲は述べなくてよい．

(1) e−3x (2) sin 5x− cos 2x

(3) (1 + 2x− 3x2 + x3) arctanx (4)
arcsinx

1 + x

(5)
cos x√
1 + x

(6) ex
√

1− x

(7)
√
1 + x+ x2 (8) log

(
1 + x− x2

3

)
解答
(1) ex の Maclaurin 展開の式において x を −3x におきかえる．そのとき，5 次以上の項は省
略すれば

e−3x = 1 + (−3x) +
(−3x)2

2
+

(−3x)3

6
+

(−3x)4

24
+ · · ·

= 1− 3x+
9

2
x2 − 9

2
x3 +

27

8
x4 − · · ·

(2) sinx, cos x の Maclaurin 展開の式において x をそれぞれ 5x, 2x におきかえる．そのとき，
5 次以上の項は省略すれば
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sin 5x− cos 2x =

{
5x− (5x)3

6
+ · · ·

}
−
{
1− (2x)2

2
+

(2x)4

24
− · · ·

}
=

(
5x− 125

6
x3 + · · ·

)
−
(
1− 2x2 +

2

3
x4 − · · ·

)
= −1 + 5x+ 2x2 − 125

6
x3 − 2

3
x4 + · · ·

(3) arctan x の Maclaurin 展開の式に 1 + 2x− 3x2 + x3 をかける．そのとき，5 次以上の項は
省略すれば

(1 + 2x− 3x2 + x3) arctanx = (1 + 2x− 3x2 + x3)

(
x− x3

3
+ · · ·

)
= x − 1

3
x3 + · · ·

+ 2x2 − 2

3
x4 + · · ·

− 3x3 + · · ·

+ x4 + · · ·

= x+ 2x2 − 10

3
x3 +

1

3
x4 + · · ·

(4) arcsin x と
1

1 + x
の Maclaurin 展開の式をかける．そのとき，5 次以上の項は省略すれば

arcsin x

1 + x
=

(
x+

x3

6
+ · · ·

)
(1− x+ x2 − x3 + x4 − · · · )

= x − x2 + x3 − x4 + · · ·

+
1

6
x3 − 1

6
x4 + · · ·

= x− x2 +
7

6
x3 − 7

6
x4 + · · ·

(5) cos x と
1√
1 + x

の Maclaurin 展開の式をかける．そのとき，5 次以上の項は省略すれば

cos x√
1 + x

=

(
1− x2

2
+

x4

24
− · · ·

)(
1− 1

2
x+

3

8
x2 − 5

16
x3 +

35

128
x4 − · · ·

)
= 1 − 1

2
x +

3

8
x2 − 5

16
x3 +

35

128
x4 + · · ·

− 1

2
x2 +

1

4
x3 − 3

16
x4 + · · ·

+
1

24
x4 + · · ·

= 1− 1

2
x− 1

8
x2 − 1

16
x3 +

49

384
x4 + · · ·

(6) ex の Maclaurin 展開の式と，
√
1 + x の Maclaurin 展開の式において x を −x におきか

えた式をかける．そのとき，5 次以上の項は省略すれば
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ex
√
1− x =

(
1 + x+

x2

2
+

x3

6
+

x4

24
+ · · ·

)(
1− 1

2
x− 1

8
x2 − 1

16
x3 − 5

128
x4 − · · ·

)
= 1 − 1

2
x − 1

8
x2 − 1

16
x3 − 5

128
x4 + · · ·

+ x − 1

2
x2 − 1

8
x3 − 1

16
x4 + · · ·

+
1

2
x2 − 1

4
x3 − 1

16
x4 + · · ·

+
1

6
x3 − 1

12
x4 + · · ·

+
1

24
x4 + · · ·

= 1 +
1

2
x− 1

8
x2 − 13

48
x3 − 79

384
x4 + · · ·

(7)
√

1 + x の Maclaurin 展開の式において x を x+ x2 におきかえる．そのとき，5 次以上の
項は省略すれば
√
1 + x+ x2 = 1 +

1

2
(x+ x2)− 1

8
(x+ x2)2 +

1

16
(x+ x2)3 − 5

128
(x+ x2)4 + · · ·

= 1 +
1

2
(x+ x2)− 1

8
(x2 + 2x3 + x4) +

1

16
(x3 + 3x4 + · · · )

　　　　　　　　　　− 5

128
(x4 + · · · ) + · · ·

= 1 +
1

2
x+

1

2
x2 − 1

8
x2 − 1

4
x3 − 1

8
x4 +

1

16
x3 +

3

16
x4 − 5

128
x4 + · · ·

= 1 +
1

2
x+

3

8
x2 − 3

16
x3 +

3

128
x4 + · · ·

(8) log(1 + x) の Maclaurin 展開の式において x を x− x2

3
におきかえる．そのとき，5 次以

上の項は省略すれば

log

(
1 + x− x2

3

)
=

(
x− x2

3

)
− 1

2

(
x− x2

3

)2

+
1

3

(
x− x2

3

)3

− 1

4

(
x− x2

3

)4

+ · · ·

=

(
x− 1

3
x2

)
− 1

2

(
x2 − 2

3
x3 +

1

9
x4

)
+

1

3
(x3 − x4 + · · · )

　　　　　　　　　　− 1

4
(x4 + · · · ) + · · ·

= x− 1

3
x2 − 1

2
x2 +

1

3
x3 − 1

18
x4 +

1

3
x3 − 1

3
x4 − 1

4
x4 + · · ·

= x− 5

6
x2 +

2

3
x3 − 23

36
x4 + · · ·
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§2. 1 変数関数の積分

★原始関数
区間 I で定義された関数 f(x) に対して，I で F ′(x) = f(x) をみたす関数 F (x) を f(x) の原
始関数という．そして，f(x) の原始関数（全体）を

　　　
∫

f(x)dx

で表す．

※ F1(x) と F2(x) を f(x) の原始関数とするとき，I で

　　　 {F1(x)− F2(x)}′ = F1
′(x)− F2

′(x) = f(x)− f(x) = 0

が成り立つから，平均値の定理より，F1(x)−F2(x) は I で定数である．よって，F (x) を f(x)

の原始関数のひとつとするとき，任意の原始関数は定数 C を用いて

　　　
∫

f(x)dx = F (x) + C

で与えられる．この定数 C を積分定数という．積分計算だけのときは，積分定数を省略するこ
とがある．

★代表的な原始関数

(1)

∫
xαdx =

1

α + 1
xα+1 (α ̸= −1)

(2)

∫
1

x
dx = log |x|

(3)

∫
exdx = ex

(4)

∫
sin xdx = − cos x

(5)

∫
cos xdx = sin x

(6)

∫
1

cos2 x
dx = tanx

(7)

∫
1

sin2 x
dx = − 1

tanx

(8)

∫
1√

1− x2
dx = arcsin x

(9)

∫
1

1 + x2
dx = arctan x

(10)

∫
1√

x2 + 1
dx = log(x+

√
x2 + 1 )

※定数 A (̸= 0), B に対して

　　　
∫

eAx+Bdx =
1

A
eAx+B

　　　
∫

sin(Ax+B)dx = − 1

A
cos(Ax+B)

などが成り立つ（他も同様）．
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【問題 2.1】 　
次を求めよ．

(1)

∫ (
x4 − 2

x
+

3

x2

)
dx (2)

∫ (
3− 5

x

)(
4x2 − 1− 2

x

)
dx

(3)

∫
(x− 1)2(3x− 1)

x2
dx (4)

∫
e4x−5dx

(5)

∫
(e3x − 4)2

e4x
dx (6)

∫
(2 sin 3x+ 5 cos 2x)dx

(7)

∫
cos2 xdx (8)

∫
sin4 xdx

(9)

∫
cos 4x cosxdx (10)

∫
sin 6x sin 3xdx

(11)

∫
(2 sin 6x− 3 cos 2x)2dx (12)

∫
(2 cos 7x− 5 sin 3x)2dx

ヒント
(7) 2 倍角の公式 cos 2θ = 2 cos2 θ − 1 から得られる

　　　 cos2 θ =
1 + cos 2θ

2
　…… 1⃝

を用いる．

(8) sin4 x = (sin2 x)2 であることと，2 倍角の公式 cos 2θ = 1− 2 sin2 θ から得られる

　　　 sin2 θ =
1− cos 2θ

2
　…… 2⃝

を用い，さらに 1⃝ も用いる．

(9) 積和の公式を用いる．積和の公式を覚えていない場合は，加法定理

　　　 cos(α + β) = cosα cos β − sinα sin β　…… 3⃝

　　　 cos(α− β) = cosα cos β + sinα sin β　…… 4⃝

を辺々加えて

　　　 cosα cos β =
1

2
{cos(α + β) + cos(α− β)}

と導けばよい．

(10) 積和の公式を用いる．積和の公式を覚えていない場合は， 3⃝− 4⃝ より

　　　 sinα sin β = − 1

2
{cos(α+ β)− cos(α− β)}

と導けばよい．

(11) 被積分関数を展開し，sin2 6x, cos2 2x の部分はそれぞれ 2⃝, 1⃝ を用い，sin 6x cos 2x の部
分は積和の公式を用いる．積和の公式を覚えていない場合は，加法定理

　　　 sin(α + β) = sinα cos β + cosα sin β　…… 5⃝
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　　　 sin(α− β) = sinα cos β − cosα sin β　…… 6⃝

を辺々加えて

　　　 sinα cos β =
1

2
{sin(α + β) + sin(α− β)}

と導けばよい．

(12) 積和の公式を覚えていない場合は， 5⃝− 6⃝ より

　　　 cosα sin β =
1

2
{sin(α + β)− sin(α− β)}

と導けばよい．

解答

(1)

∫ (
x4 − 2

x
+

3

x2

)
dx =

1

5
x5 − 2 log |x| − 3

x

※
∫

1

x2
dx =

∫
x−2dx =

1

−2 + 1
x−2+1 = −x−1 = − 1

x
　（これは公式としたい）

(2)

∫ (
3− 5

x

)(
4x2 − 1− 2

x

)
dx =

∫ (
12x2 − 20x− 3− 1

x
+

10

x2

)
dx

= 4x3 − 10x2 − 3x− log |x| − 10

x

(3)

∫
(x− 1)2(3x− 1)

x2
dx =

∫ (
3x− 7 +

5

x
− 1

x2

)
dx

=
3

2
x2 − 7x+ 5 log |x|+ 1

x

(4)

∫
e4x−5dx =

1

4
e4x−5

(5)

∫
(e3x − 4)2

e4x
dx =

∫
e6x − 8e3x + 16

e4x
dx

=

∫
(e2x − 8e−x + 16e−4x)dx

=
1

2
e2x + 8e−x − 4e−4x

(6)

∫
(2 sin 3x+ 5 cos 2x)dx = − 2

3
cos 3x+

5

2
sin 2x

(7)

∫
cos2 xdx =

∫
1 + cos 2x

2
dx =

1

2

(
x+

1

2
sin 2x

)
=

1

2
x+

1

4
sin 2x
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(8)

∫
sin4 xdx =

∫
(sin2 x)2dx

=

∫ (
1− cos 2x

2

)2

dx

=

∫
1− 2 cos 2x+ cos2 2x

4
dx

=

∫
1

4

(
1− 2 cos 2x+

1 + cos 4x

2

)
dx

=
1

4

{
x− sin 2x+

1

2

(
x+

1

4
sin 4x

)}
=

1

4

(
3

2
x− sin 2x+

1

8
sin 4x

)
=

3

8
x− 1

4
sin 2x+

1

32
sin 4x

(9)

∫
cos 4x cosxdx =

∫
1

2
(cos 5x+ cos 3x)dx

=
1

2

(
1

5
sin 5x+

1

3
sin 3x

)
=

1

10
sin 5x+

1

6
sin 3x

(10)

∫
sin 6x sin 3xdx =

∫
− 1

2
(cos 9x− cos 3x)dx

= − 1

2

(
1

9
sin 9x− 1

3
sin 3x

)
= − 1

18
sin 9x+

1

6
sin 3x

(11)

∫
(2 sin 6x− 3 cos 2x)2dx

=

∫
(4 sin2 6x− 12 sin 6x cos 2x+ 9 cos2 2x)dx

=

∫ {
4 · 1− cos 12x

2
− 12 · 1

2
(sin 8x+ sin 4x) + 9 · 1 + cos 4x

2

}
dx

= 2

(
x− 1

12
sin 12x

)
− 6

(
− 1

8
cos 8x− 1

4
cos 4x

)
+

9

2

(
x+

1

4
sin 4x

)
=

13

2
x− 1

6
sin 12x+

3

4
cos 8x+

3

2
cos 4x+

9

8
sin 4x
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(12)

∫
(2 cos 7x− 5 sin 3x)2dx

=

∫
(4 cos2 7x− 20 cos 7x sin 3x+ 25 sin2 3x)dx

=

∫ {
4 · 1 + cos 14x

2
− 20 · 1

2
(sin 10x− sin 4x) + 25 · 1− cos 6x

2

}
dx

= 2

(
x+

1

14
sin 14x

)
− 10

(
− 1

10
cos 10x+

1

4
cos 4x

)
+

25

2

(
x− 1

6
sin 6x

)
=

29

2
x+

1

7
sin 14x+ cos 10x− 5

2
cos 4x− 25

12
sin 6x

★プチ置換
f(x) を区間 I で微分可能な関数とする．このとき，I で

　　　 {log |f(x)|}′ = f ′(x)

f(x)

　　　
{

1

α + 1
f(x)α+1

}′

= f(x)α · f ′(x) (α ̸= −1)

をみたすから，次が成り立つ．

(1)

∫
f ′(x)

f(x)
dx = log |f(x)|

分数のときは，まずは分母の微分を考える．そして，分母の微分が分子にあればプチ置換 (1)

で計算．

(2)

∫
f(x)α · f ′(x)dx =

1

α+ 1
f(x)α+1 (α ̸= −1)

ルートやべき乗があるときは，まずはルートやべき乗の中の微分を考える．そして，ルートや
べき乗の中の微分が外にあればプチ置換 (2) で計算．

※ log x と
1

x
があるときは，

1

x
を (log x)′ とみてプチ置換で計算するとよい．

【例題】

(1)

∫
5x

3x2 − 1
dx =

5

6

∫
6x

3x2 − 1
dx =

5

6
log |3x2 − 1|

※「分数であるから，まずは分母の 3x2 − 1 を微分してみるかな．

　　　 (3x2 − 1)′ = 6x

これは分子の 5x ではないけど，
:::::::::::::::::::
係数を修正すれば分子になるから，プチ置換 (1) だ」と考え

て計算している．分数ならいつでもプチ置換 (1) が使えるとは限らないが，分数のときはプチ
置換 (1) が使えるかどうかを試してみよう．

(2)

∫
tan 2xdx =

∫
sin 2x

cos 2x
dx =

1

−2

∫
−2 sin 2x

cos 2x
dx = − 1

2
log | cos 2x|

※「tan 2x は分数ではないけど，
sin 2x

cos 2x
にすれば分数だ．そして，分母の微分は
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(cos 2x)′ = −2 sin 2x で，
:::::::::::::::::::
係数を修正すれば分子になるから，プチ置換 (1) だ」と考えて計算し

ている．

(3)

∫
sin6 x · cosxdx =

1

7
sin7 x

※「sin6 x = (sinx)6 はべき乗で，中の微分は (sinx)′ = cos x で外にあるから，プチ置換 (2)

だ」と考えて計算している．

(4)

∫
−2x+ 1√
x2 − x+ 7

dx = −
∫

(x2 − x+ 7)−
1
2 · (2x− 1)dx

= −2(x2 − x+ 7)
1
2

= −2
√

x2 − x+ 7

※「ルートがあって，ルートの中の微分は (x2 − x + 7)′ = 2x − 1 で，
::::::::::::::::::
係数を修正すれば外に

あるから，プチ置換 (2) だ」と考えて計算している．

(5)

∫
sin3 x =

∫
sin2 x sin xdx

=

∫
(1− cos2 x) sin xdx

=

∫
(sinx− cos2 x sin x)dx

=

∫
{sinx+ cos2 x · (− sinx)}dx

= − cosx+
1

3
cos3 x

【問題 2.2】 　
次を求めよ．

(1)

∫
2x+ 4

x2 + 4x+ 1
dx (2)

∫
e2x

e2x + 1
dx

(3)

∫
− cosx

3 sin x+ 2
dx (4)

∫
4 sin 3x

6 cos 3x− 5
dx

(5)

∫
1

x log 2x
dx (6)

∫
1

tanx
dx

(7)

∫
e2x(e2x − 1)2dx (8)

∫
(log x)4

x
dx

(9)

∫
cosx

sin5 x
dx (10)

∫
sin x

(cosx+ 2)3
dx

(11)

∫
x
√
x2 + 5 dx (12)

∫
x
√

4x2 − 3 dx

(13)

∫
x
√

(1− x2)5 dx (14)

∫
x√

x2 + 3
dx
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(15)

∫
x√

1− 3x2
dx (16)

∫
cos5 xdx

(17)

∫
(2 sin2 x+ 5 sin4 x) cos3 xdx (18)

∫
1 + 2x

1 + x2
dx

(19)

∫
1− 2x√
1− x2

dx (20)

∫
sin x

3 + sin2 x
dx

解答

(1)

∫
2x+ 4

x2 + 4x+ 1
dx = log |x2 + 4x+ 1|

(2)

∫
e2x

e2x + 1
dx =

1

2

∫
2e2x

e2x + 1
dx =

1

2
log(e2x + 1)

(3)

∫
− cosx

3 sin x+ 2
dx =

−1

3

∫
3 cos x

3 sin x+ 2
dx = − 1

3
log |3 sin x+ 2|

(4)

∫
4 sin 3x

6 cos 3x− 5
dx =

4

−18

∫
−18 sin 3x

6 cos 3x− 5
dx = − 2

9
log |6 cos 3x− 5|

(5)

∫
1

x log 2x
dx =

∫ 1
x

log 2x
dx = log | log 2x|

(6)

∫
1

tanx
dx =

∫
cos x

sin x
dx = log | sin x|

(7)

∫
e2x(e2x − 1)2dx =

1

2

∫
(e2x − 1)2 · 2e2xdx =

1

6
(e2x − 1)3

(8)

∫
(log x)4

x
dx =

∫
(log x)4 · 1

x
dx =

1

5
(log x)5

(9)

∫
cosx

sin5 x
dx =

∫
(sinx)−5 · cos xdx =

1

−4
(sinx)−4 = − 1

4 sin4 x

(10)

∫
sinx

(cosx+ 2)3
dx = −

∫
(cosx+ 2)−3 · (− sinx)dx = − 1

−2
(cosx+ 2)−2 =

1

2(cosx+ 2)2

(11)

∫
x
√
x2 + 5 dx =

1

2

∫
(x2 + 5)

1
2 · 2xdx =

1

2
· 2

3
(x2 + 5)

3
2 =

1

3

√
(x2 + 5)3

(12)

∫
x
√
4x2 − 3 dx =

1

8

∫
(4x2 − 3)

1
2 · 8xdx =

1

8
· 2

3
(4x2 − 3)

3
2 =

1

12

√
(4x2 − 3)3

(13)

∫
x
√

(1− x2)5 dx =
1

−2

∫
(1− x2)

5
2 · (−2x)dx = − 1

2
· 2

7
(1− x2)

7
2 = − 1

7

√
(1− x2)7

(14)

∫
x√

x2 + 3
dx =

1

2

∫
(x2 + 3)−

1
2 · 2xdx =

1

2
· 2(x2 + 3)

1
2 =

√
x2 + 3
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(15)

∫
x√

1− 3x2
dx =

1

−6

∫
(1− 3x2)−

1
2 · (−6x)dx = − 1

6
· 2(1− 3x2)

1
2 = − 1

3

√
1− 3x2

(16)

∫
cos5 xdx =

∫
(cos2 x)2 cosxdx

=

∫
(1− sin2 x)2 cos xdx

=

∫
(1− 2 sin2 x+ sin4 x) cos xdx

=

∫
(cosx− 2 sin2 x · cosx+ sin4 x · cosx)dx

= sin x− 2

3
sin3 x+

1

5
sin5 x

(17)

∫
(2 sin2 x+ 5 sin4 x) cos3 xdx =

∫
(2 sin2 x+ 5 sin4 x)(1− sin2 x) cos xdx

=

∫
(2 sin2 x+ 3 sin4 x− 5 sin6 x) cos xdx

=

∫
(2 sin2 x · cosx+ 3 sin4 x · cos x− 5 sin6 x · cos x)dx

=
2

3
sin3 x+

3

5
sin5 x− 5

7
sin7 x

(18)

∫
1 + 2x

1 + x2
dx =

∫ (
1

1 + x2
+

2x

1 + x2

)
dx = arctan x+ log(1 + x2)

(19)

∫
1− 2x√
1− x2

dx =

∫ (
1√

1− x2
+

−2x√
1− x2

)
dx

=

∫ {
1√

1− x2
+ (1− x2)−

1
2 · (−2x)

}
dx

= arcsin x+ 2(1− x2)
1
2

= arcsin x+ 2
√

1− x2
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(20)

∫
sinx

3 + sin2 x
dx =

∫
sin x

4− cos2 x
dx

=

∫
sinx

(2− cos x)(2 + cos x)
dx

=

∫
1

4

(
sinx

2− cos x
+

sinx

2 + cos x

)
dx

=

∫
1

4

(
sinx

2− cos x
− − sinx

2 + cosx

)
dx

=
1

4
{log(2− cosx)− log(2 + cos x)}

=
1

4
log

2− cosx

2 + cos x

★部分積分
f(x), g(x) を区間 I で微分可能な関数とする．このとき，I で

　　　 {f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x)

をみたすから，次が成り立つ．

　　　
∫

{f ′(x)g(x) + f(x)g′(x)}dx = f(x)g(x)

よって，f ′(x)g(x) の原始関数が求められるときは，

　　　
∫

f(x)g′(x)dx = f(x)g(x)−
∫

f ′(x)g(x)dx

により f(x)g′(x) の原始関数が求められる．

f(x) g(x)

f ′(x) g′(x)

�
�

�	

@
@
@R

　　　　　　　

☆部分積分のやり方
基本的に，被積分関数が積の形のときに用いる．
(1) 被積分関数を「左上」と「右下」に配置する．
まずはやってみる．うまくいかなければ逆配置．経験をつむと，配置の仕方がわかってくる．

　・x● は「左上」に置くとよさそう．（準正解）
　・「右下」には，原始関数が（簡単に）求まるものしか置けない．（正解）　→ log は「左上」？

(2) 「左下」と「右上」を埋める．

(3) 矢印の通りに部分積分を実行する．

※特殊形
(1) 「右下」を 1 として部分積分する．

(2) 左辺と同じ積分が右辺にも現れた場合，最後は方程式を解くようにして求める．

※テクニック
「左下」をみてから「右上」を定数で修正する．
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【例題】

(1)

∫
xe5xdx

ステップ 1：被積分関数を「左上」と「右下」に配置する．

x

e5x

@
@
@R

←この矢印が左辺

ステップ 2：「左下」と「右上」を埋める．

x
1

5
e5x

1 e5x

�
�

�	

←この矢印が右辺
「横はかけるだけ」
「斜めはかけて積分」を引く

ステップ 3：矢印の通りに部分積分を実行する．∫
xe5xdx =

1

5
xe5x︸ ︷︷ ︸
横

− 1

5

∫
e5xdx︸ ︷︷ ︸

斜め

=
1

5
xe5x − 1

25
e5x

(2)

∫
x sin 3xdx = − 1

3
x cos 3x+

1

3

∫
cos 3xdx

= − 1

3
x cos 3x+

1

9
sin 3x

x − 1

3
cos 3x

1 sin 3x

�
�

�	

@
@
@R

　　

(3)

∫
x2 sin xdx = −x2 cosx+ 2

∫
x cos xdx

= −x2 cosx+ 2

(
x sinx−

∫
sin xdx

)
= −x2 cosx+ 2(x sin x+ cos x)

= −x2 cosx+ 2x sin x+ 2 cos x

※ 2 回部分積分をやらなければいけないこともある．

x2 − cos x

2x sin x

�
�

�	

@
@
@R

　　

x sin x

1 cos x

�
�

�	

@
@
@R

　　

(4)

∫
log(x− 3)dx = (x− 3) log(x− 3)−

∫
dx

= (x− 3) log(x− 3)− x

log(x− 3) x− 3

1

x− 3
1

�
�

�	

@
@
@R

　　

※特殊形 (1)：「右下」を 1 として部分積分する．
テクニック：「左下」の形を見て，「右上」を

::::::::::::
定数で修正する．
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(5)

∫
ex sinxdx = −ex cos x+

∫
ex cosxdx

= −ex cos x+

(
ex sin x−

∫
ex sinxdx︸ ︷︷ ︸
移項

) ex − cos x

ex sin x

�
�

�	

@
@
@R

　　

ex sin x

ex cos x

�
�

�	

@
@
@R

　　であるから

　　 2

∫
ex sinxdx = −ex cosx+ ex sin x

よって

　　
∫

ex sin xdx =
1

2
(−ex cos x+ ex sin x)

※特殊形 (2)：左辺と同じ積分が右辺にも現れるときがある．

【問題 2.3】 　
次を求めよ．

(1)

∫
xe4xdx (2)

∫
xe

x
3 dx

(3)

∫
x2e−xdx (4)

∫
x cos 2xdx

(5)

∫
x2 cos xdx (6)

∫
log 4x

x2
dx

(7)

∫
x2 log xdx (8)

∫
(log x)2dx

(9)

∫
x

cos2 x
dx (10)

∫
arctanxdx

(11)

∫
arcsinxdx (12)

∫
2x arctanxdx

(13)

∫
2x(arctanx)2dx (14)

∫
(3x− sinx)2dx

(15)

∫
e2x cos xdx (16)

∫
e−3x sin 2xdx

解答

(1)

∫
xe4xdx =

1

4
xe4x − 1

4

∫
e4xdx

=
1

4
xe4x − 1

16
e4x

x
1

4
e4x

1 e4x

�
�

�	

@
@
@R
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(2)

∫
xe

x
3 dx = 3xe

x
3 − 3

∫
e

x
3 dx

= 3xe
x
3 − 9e

x
3

x 3e
x
3

1 e
x
3

�
�

�	

@
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(3)

∫
x2e−xdx = −x2e−x + 2

∫
xe−xdx

= −x2e−x + 2

(
−xe−x +

∫
e−xdx

)
= −x2e−x + 2(−xe−x − e−x)

= −x2e−x − 2xe−x − 2e−x

x2 −e−x

2x e−x

�
�

�	

@
@
@R

　　

x −e−x

1 e−x

�
�

�	

@
@
@R

　　

(4)

∫
x cos 2xdx =

1

2
x sin 2x− 1

2

∫
sin 2xdx

=
1

2
x sin 2x+

1

4
cos 2x

x
1

2
sin 2x

1 cos 2x

�
�

�	

@
@
@R

　　

(5)

∫
x2 cos xdx = x2 sin x− 2

∫
x sinxdx

= x2 sin x− 2

(
−x cosx+

∫
cos xdx

)
= x2 sin x− 2(−x cosx+ sin x)

= x2 sin x+ 2x cos x− 2 sin x

x2 sin x

2x cos x

�
�

�	

@
@
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x − cos x

1 sin x

�
�

�	

@
@
@R

　　

(6)

∫
log 4x

x2
dx = − log 4x

x
+

∫
1

x2
dx

= − log 4x

x
− 1

x

log 4x − 1

x
1

x

1

x2

�
�

�	

@
@
@R

　　

(7)

∫
x2 log xdx =

1

3
x3 log x− 1

3

∫
x2dx

=
1

3
x3 log x− 1

9
x3

log x
1

3
x3

1

x
x2

�
�

�	

@
@
@R
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(8)

∫
(log x)2dx = x(log x)2 − 2

∫
log xdx

= x(log x)2 − 2

(
x log x−

∫
dx

)
= x(log x)2 − 2(x log x− x)

= x(log x)2 − 2x log x+ 2x

(log x)2 x

2 log x · 1

x
1

�
�

�	

@
@
@R

　　

log x x

1

x
1

�
�

�	

@
@
@R

　　

(9)

∫
x

cos2 x
dx = x tanx−

∫
tanxdx

= x tanx+

∫
− sinx

cos x
dx

= x tanx+ log | cosx|

x tanx

1
1

cos2 x

�
�

�	

@
@
@R

　　

(10)

∫
arctanxdx = x arctanx−

∫
x

1 + x2
dx

= x arctanx− 1

2

∫
2x

1 + x2
dx

= x arctanx− 1

2
log(1 + x2)

arctanx x

1

1 + x2
1

�
�

�	

@
@
@R

　　

(11)

∫
arcsinxdx = x arcsin x−

∫
x√

1− x2
dx

= x arcsin x+
1

2

∫
(1− x2)−

1
2 · (−2x)dx

= x arcsin x+
1

2
· 2(1− x2)

1
2

= x arcsin x+
√
1− x2

arcsinx x

1√
1− x2

1

�
�

�	

@
@
@R

　　

(12)

∫
2x arctanxdx = (x2 + 1) arctanx−

∫
dx

= (x2 + 1) arctanx− x

arctanx x2 + 1

1

1 + x2
2x

�
�

�	

@
@
@R
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(13)

∫
2x(arctanx)2dx

= (x2 + 1)(arctanx)2 − 2

∫
arctanxdx

= (x2 + 1)(arctanx)2 − 2

{
x arctanx− 1

2
log(1 + x2)

}
= (x2 + 1)(arctanx)2 − 2x arctanx+ log(1 + x2)

(arctan x)2 x2 + 1

2 arctanx · 1

1 + x2
2x

�
�

�	

@
@
@R

　　

(14)

∫
(3x− sinx)2dx

=

∫
(9x2 − 6x sin x+ sin2 x)dx

= 3x3 − 6

(
−x cos x+

∫
cosxdx

)
+

∫
1− cos 2x

2
dx

= 3x3 − 6(−x cos x+ sinx) +
1

2

(
x− 1

2
sin 2x

)
= 3x3 +

1

2
x+ 6x cosx− 1

4
sin 2x− 6 sin x

x − cos x

1 sin x

�
�

�	

@
@
@R

　　

(15)

∫
e2x cosxdx

= e2x sin x− 2

∫
e2x sin xdx

= e2x sin x− 2

(
−e2x cos x+ 2

∫
e2x cos xdx

)
= e2x sin x+ 2e2x cosx− 4

∫
e2x cosxdx︸ ︷︷ ︸
移項

e2x sin x

2e2x cos x

�
�

�	

@
@
@R

　　

e2x − cos x

2e2x sin x

�
�

�	

@
@
@R

　　

であるから

　　 5

∫
e2x cos xdx = e2x sinx+ 2e2x cos x

よって

　　
∫

e2x cosxdx =
1

5
(e2x sinx+ 2e2x cos x)

=
1

5
e2x sin x+

2

5
e2x cosx
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(16)

∫
e−3x sin 2xdx

= − 1

2
e−3x cos 2x− 3

2

∫
e−3x cos 2xdx

= − 1

2
e−3x cos 2x− 3

2

(
1

2
e−3x sin 2x+

3

2

∫
e−3x sin 2xdx

)
= − 1

2
e−3x cos 2x− 3

4
e−3x sin 2x− 9

4

∫
e−3x sin 2xdx︸ ︷︷ ︸
移項

e−3x − 1

2
cos 2x

−3e−3x sin 2x

�
�

�	

@
@
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e−3x
1

2
sin 2x

−3e−3x cos 2x

�
�

�	

@
@
@R

　　

であるから

　　
13

4

∫
e−3x sin 2xdx = − 1

2
e−3x cos 2x− 3

4
e−3x sin 2x

よって

　　
∫

e−3x sin 2xdx =
4

13

(
− 1

2
e−3x cos 2x− 3

4
e−3x sin 2x

)
= − 2

13
e−3x cos 2x− 3

13
e−3x sin 2x

★有理関数の積分
分母を実数の範囲で因数分解し，その形から部分分数に分解してそれぞれを積分する．

　　　
∫

1

a2 + (x+ b)2
dx =

1

a
arctan

x+ b

a
(a ̸= 0)

は公式としてよい（左辺において x+b = atと置換するか，右辺を微分することにより示せる）．

【例題】∫
x2 − 7x− 1

(x− 2)(x2 + 2x+ 3)
dx を求めよ．

解答
x2 − 7x− 1

(x− 2)(x2 + 2x+ 3)
=

A

x− 2
+

Bx+ C

x2 + 2x+ 3

と分解の形を決めてから分母をはらうと

x2 − 7x− 1 = A(x2 + 2x+ 3) + (Bx+ C)(x− 2) · · · (∗)

x = 2 を代入 −11 = 11A　　...　A = −1

x = 0 を代入 −1 = 3A− 2C

−1 = −3− 2C　　...　C = −1

x = 1 を代入 −7 = 6A− (B + C)

−7 = −6−B + 1　　...　B = 2
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よって，プチ置換 (1) と上の公式を用いると∫
x2 − 7x− 1

(x− 2)(x2 + 2x+ 3)
dx =

∫ (
− 1

x− 2
+

2x− 1

x2 + 2x+ 3

)
dx

=

∫ {
− 1

x− 2
+

(2x+ 2)− 3

x2 + 2x+ 3

}
dx

=

∫ {
− 1

x− 2
+

2x+ 2

x2 + 2x+ 3
− 3

(
√

2 )2 + (x+ 1)2

}
dx

= − log |x− 2|+ log(x2 + 2x+ 3)− 3√
2

arctan
x+ 1√

2

※A,B,C を求めるとき，(∗) の右辺を展開して

x2 − 7x− 1 = (A+B)x2 + (2A− 2B + C)x+ (3A− 2C)

としてから係数比較して，連立方程式
A+B = 1

2A− 2B + C = −7

3A− 2C = −1

を解いてもよい．

【問題 2.4】 　
次を求めよ．

(1)

∫
14x+ 18

(x+ 1)(x+ 2)(x− 3)
dx (2)

∫
1

x3(x− 1)
dx

(3)

∫
5x2 − 2x+ 2

(x+ 1)(x2 − x+ 1)
dx (4)

∫
x2 − x− 11

(x− 3)(x2 − 2x+ 2)
dx

(5)

∫
x2 + x+ 3

(x+ 1)(x2 + 2x+ 2)
dx (6)

∫
−10x2 + 5x+ 48

(x− 2)(x− 3)(x2 + 4x+ 6)
dx

(7)

∫
7x2 + 12x+ 65

(x+ 1)(x− 2)(x2 + 2x+ 5)
dx (8)

∫
8x2 − 16x+ 15

x2(x2 − 2x+ 5)
dx

ヒント
分解の形は次のようになる．

(1)
14x+ 18

(x+ 1)(x+ 2)(x− 3)
=

A

x+ 1
+

B

x+ 2
+

C

x− 3

(2)
1

x3(x− 1)
=

A

x
+

B

x2
+

C

x3
+

D

x− 1

(3)
5x2 − 2x+ 2

(x+ 1)(x2 − x+ 1)
=

A

x+ 1
+

Bx+ C

x2 − x+ 1

(4)
x2 − x− 11

(x− 3)(x2 − 2x+ 2)
=

A

x− 3
+

Bx+ C

x2 − 2x+ 2
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(5)
x2 + x+ 3

(x+ 1)(x2 + 2x+ 2)
=

A

x+ 1
+

Bx+ C

x2 + 2x+ 2

(6)
−10x2 + 5x+ 48

(x− 2)(x− 3)(x2 + 4x+ 6)
=

A

x− 2
+

B

x− 3
+

Cx+D

x2 + 4x+ 6

(7)
7x2 + 12x+ 65

(x+ 1)(x− 2)(x2 + 2x+ 5)
=

A

x+ 1
+

B

x− 2
+

Cx+D

x2 + 2x+ 5

(8)
8x2 − 16x+ 15

x2(x2 − 2x+ 5)
=

A

x
+

B

x2
+

Cx+D

x2 − 2x+ 5

解答

(1)
14x+ 18

(x+ 1)(x+ 2)(x− 3)
=

A

x+ 1
+

B

x+ 2
+

C

x− 3

と分解の形を決めてから分母をはらうと

14x+ 18 = A(x+ 2)(x− 3) +B(x+ 1)(x− 3) + C(x+ 1)(x+ 2)

x = −1 を代入 4 = −4A　　...　A = −1

x = −2 を代入 −10 = 5B　　...　B = −2

x = 3 を代入 60 = 20C　　...　C = 3

よって∫
14x+ 18

(x+ 1)(x+ 2)(x− 3)
dx =

∫ (
− 1

x+ 1
− 2

x+ 2
+

3

x− 3

)
dx

= − log |x+ 1| − 2 log |x+ 2|+ 3 log |x− 3|

(2)
1

x3(x− 1)
=

A

x
+

B

x2
+

C

x3
+

D

x− 1

と分解の形を決めてから分母をはらうと

1 = Ax2(x− 1) +Bx(x− 1) + C(x− 1) +Dx3

x = 0 を代入 1 = −C　　...　C = −1

x = 1 を代入 1 = D

x = −1 を代入 1 = −2A+ 2B − 2C −D

1 = −2A+ 2B + 2− 1　　...　A = B

x = 2 を代入 1 = 4A+ 2B + C + 8D

1 = 4A+ 2A− 1 + 8　　...　A = −1, B = −1

よって∫
1

x3(x− 1)
dx =

∫ (
− 1

x
− 1

x2
− 1

x3
+

1

x− 1

)
dx

= − log |x|+ 1

x
+

1

2x2
+ log |x− 1|

※C,D を求めた後，次のように A,B を求めてもよい．

66



x3 の係数比較 0 = A+D　　...　A = −D = −1

x の係数比較 0 = −B + C　　...　B = C = −1

数値代入だけでなく，係数比較も用いるなどして，臨機応変に求めるとよい．

(3)
5x2 − 2x+ 2

(x+ 1)(x2 − x+ 1)
=

A

x+ 1
+

Bx+ C

x2 − x+ 1

と分解の形を決めてから分母をはらうと

5x2 − 2x+ 2 = A(x2 − x+ 1) + (Bx+ C)(x+ 1)

x = −1 を代入 9 = 3A　　...　A = 3

x = 0 を代入 2 = A+ C

2 = 3 + C　　...　C = −1

x = 1 を代入 5 = A+ 2(B + C)

5 = 3 + 2B − 2　　...　B = 2

よって∫
5x2 − 2x+ 2

(x+ 1)(x2 − x+ 1)
dx =

∫ (
3

x+ 1
+

2x− 1

x2 − x+ 1

)
dx

= 3 log |x+ 1|+ log(x2 − x+ 1)

(4)
x2 − x− 11

(x− 3)(x2 − 2x+ 2)
=

A

x− 3
+

Bx+ C

x2 − 2x+ 2

と分解の形を決めてから分母をはらうと

x = 3 を代入 −5 = 5A　　...　A = −1

x = 0 を代入 −11 = 2A− 3C

−11 = −2− 3C　　...　C = 3

x = 1 を代入 −11 = A− 2(B + C)

−11 = −1− 2B − 6　　...　B = 2

よって∫
x2 − x− 11

(x− 3)(x2 − 2x+ 2)
dx =

∫ (
− 1

x− 3
+

2x+ 3

x2 − 2x+ 2

)
dx

=

∫ {
− 1

x− 3
+

(2x− 2) + 5

x2 − 2x+ 2

}
dx

=

∫ {
− 1

x− 3
+

2x− 2

x2 − 2x+ 2
+

5

1 + (x− 1)2

}
dx

= − log |x− 3|+ log(x2 − 2x+ 2) + 5 arctan(x− 1)

(5)
x2 + x+ 3

(x+ 1)(x2 + 2x+ 2)
=

A

x+ 1
+

Bx+ C

x2 + 2x+ 2
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と分解の形を決めてから分母をはらうと

x2 + x+ 3 = A(x2 + 2x+ 2) + (Bx+ C)(x+ 1)

x = −1 を代入 3 = A

x = 0 を代入 3 = 2A+ C

3 = 6 + C　　...　C = −3

x = 1 を代入 5 = 5A+ 2(B + C)

5 = 15 + 2B − 6　　...　B = −2

よって∫
x2 + x+ 3

(x+ 1)(x2 + 2x+ 2)
dx =

∫ (
3

x+ 1
+

−2x− 3

x2 + 2x+ 2

)
dx

=

∫ {
3

x+ 1
+

−(2x+ 2)− 1

x2 + 2x+ 2

}
dx

=

∫ {
3

x+ 1
− 2x+ 2

x2 + 2x+ 2
− 1

1 + (x+ 1)2

}
dx

= 3 log |x+ 1| − log(x2 + 2x+ 2)− arctan(x+ 1)

(6)
−10x2 + 5x+ 48

(x− 2)(x− 3)(x2 + 4x+ 6)
=

A

x− 2
+

B

x− 3
+

Cx+D

x2 + 4x+ 6

と分解の形を決めてから分母をはらうと

−10x2 + 5x+ 48 = A(x− 3)(x2 + 4x+ 6) +B(x− 2)(x2 + 4x+ 6) + (Cx+D)(x− 2)(x− 3)

x = 2 を代入 18 = −18A　　...　A = −1

x = 3 を代入 −27 = 27B　　...　B = −1

x = 0 を代入 48 = −18A− 12B + 6D

8 = −3A− 2B +D

8 = 3 + 2 +D　　...　D = 3

x = 1 を代入 43 = −22A− 11B + 2(C +D)

43 = 22 + 11 + 2C + 6　　...　C = 2

よって∫
−10x2 + 5x+ 48

(x− 2)(x− 3)(x2 + 4x+ 6)
dx

=

∫ (
− 1

x− 2
− 1

x− 3
+

2x+ 3

x2 + 4x+ 6

)
dx

=

∫ {
− 1

x− 2
− 1

x− 3
+

(2x+ 4)− 1

x2 + 4x+ 6

}
dx

=

∫ {
− 1

x− 2
− 1

x− 3
+

2x+ 4

x2 + 4x+ 6
− 1

(
√
2 )2 + (x+ 2)2

}
dx

= − log |x− 2| − log |x− 3|+ log(x2 + 4x+ 6)− 1√
2

arctan
x+ 2√

2
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(7)
7x2 + 12x+ 65

(x+ 1)(x− 2)(x2 + 2x+ 5)
=

A

x+ 1
+

B

x− 2
+

Cx+D

x2 + 2x+ 5

と分解の形を決めてから分母をはらうと

7x2 + 12x+ 65 = A(x− 2)(x2 + 2x+ 5) +B(x+ 1)(x2 + 2x+ 5) + (Cx+D)(x+ 1)(x− 2)

x = −1 を代入 60 = −12A　　...　A = −5

x = 2 を代入 117 = 39B　　...　B = 3

x = 0 を代入 65 = −10A+ 5B − 2D

65 = 50 + 15− 2D　　...　D = 0

x = 1 を代入 84 = −8A+ 16B − 2(C +D)

42 = −4A+ 8B − (C +D)

42 = 20 + 24− C　　...　C = 2

よって∫
7x2 + 12x+ 65

(x+ 1)(x− 2)(x2 + 2x+ 5)
dx

=

∫ (
− 5

x+ 1
+

3

x− 2
+

2x

x2 + 2x+ 5

)
dx

=

∫ (
− 5

x+ 1
+

3

x− 2
+

(2x+ 2)− 2

x2 + 2x+ 5

)
dx

=

∫ {
− 5

x+ 1
+

3

x− 2
+

2x+ 2

x2 + 2x+ 5
− 2

22 + (x+ 1)2

}
dx

= −5 log |x+ 1|+ 3 log |x− 2|+ log(x2 + 2x+ 5)− arctan
x+ 1

2

(8)
8x2 − 16x+ 15

x2(x2 − 2x+ 5)
=

A

x
+

B

x2
+

Cx+D

x2 − 2x+ 5

と分解の形を決めてから分母をはらうと

8x2 − 16x+ 15 = Ax(x2 − 2x+ 5) +B(x2 − 2x+ 5) + (Cx+D)x2

8x2 − 16x+ 15 = (A+ C)x3 + (−2A+B +D)x2 + (5A− 2B)x+ 5B

係数比較して
A+ C = 0 · · · 1⃝
−2A+B +D = 8 · · · 2⃝
5A− 2B = −16 · · · 3⃝
5B = 15 · · · 4⃝

4⃝, 3⃝, 1⃝, 2⃝ の順で解けば B = 3, A = −2, C = 2, D = 1

よって
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∫
8x2 − 16x+ 15

x2(x2 − 2x+ 5)
dx

=

∫ (
− 2

x
+

3

x2
+

2x+ 1

x2 − 2x+ 5

)
dx

=

∫ {
− 2

x
+

3

x2
+

(2x− 2) + 3

x2 − 2x+ 5

}
dx

=

∫ {
− 2

x
+

3

x2
+

2x− 2

x2 − 2x+ 5
+

3

22 + (x− 1)2

}
dx

= −2 log |x| − 3

x
+ log(x2 − 2x+ 5) +

3

2
arctan

x− 1

2

★三角関数の有理形
三角関数の有理形の積分は，t = tan

x

2
と置換する．このとき

　　 cos x =
1− t2

1 + t2
, sin x =

2t

1 + t2
,

dx

dt
=

2

1 + t2

を用いる．つまり，与えられた x の積分を

　　 cos x −→ 1− t2

1 + t2
,　　 sinx −→ 2t

1 + t2
,　　 dx −→ 2

1 + t2
dt

とおきかえて，t の積分に変えて計算する．

【例題】∫
sin x+ 3 cos x+ 3

sin x(sinx+ cos x+ 1)
dx を求めよ．

解答
t = tan

x

2
とおくと

∫
sin x+ 3 cos x+ 3

sin x(sinx+ cos x+ 1)
dx =

∫ 2t

1 + t2
+ 3 · 1− t2

1 + t2
+ 3

2t

1 + t2

(
2t

1 + t2
+

1− t2

1 + t2
+ 1

) · 2

1 + t2
dt

=

∫
t+ 3

t(t+ 1)
dt

=

∫ (
3

t
− 2

t+ 1

)
dt

= 3 log |t| − 2 log |t+ 1|

= 3 log
∣∣∣tan x

2

∣∣∣− 2 log
∣∣∣tan x

2
+ 1
∣∣∣

※
t+ 3

t(t+ 1)
=

A

t
+

B

t+ 1
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と分解の形を決めてから分母をはらうと

t+ 3 = A(t+ 1) +Bt

t = 0,−1 を代入すれば，順に A = 3, B = −2 が求まる．

【問題 2.5】 　
t = tan

x

2
とおくことにより，次の積分を求めよ．答えは，t についての積分を実行したとこ

ろまででよいことにする（x の式にもどさなくてもよいことにする）．

(1)

∫
1

sin x
dx (2)

∫
1

cosx
dx

(3)

∫
1

4 + 5 cosx
dx (4)

∫
1

1 + sinx
dx

(5)

∫
1

3 sin x+ 4 cos x+ 5
dx (6)

∫
1

5 cos x+ 12 sin x+ 13
dx

(7)

∫
1

2 + cos x
dx (8)

∫
1

2 + sinx
dx

(9)

∫
5

3 sin x+ 4 cos x
dx (10)

∫
3 + sin x

cosx(2 + cos x)
dx

解答

(1)

∫
1

sin x
dx =

∫
1
2t

1 + t2

· 2

1 + t2
dt =

∫
1

t
dt = log |t|

(2)

∫
1

cos x
dx =

∫
1

1− t2

1 + t2

· 2

1 + t2
dt

=

∫
2

1− t2
dt

=

∫
−2

(t+ 1)(t− 1)
dt

=

∫ (
1

t+ 1
− 1

t− 1

)
dt

= log |t+ 1| − log |t− 1|

※
−2

(t+ 1)(t− 1)
=

A

t+ 1
+

B

t− 1

と分解の形を決めてから分母をはらうと

−2 = A(t− 1) +B(t+ 1)

t = −1, 1 を代入すれば，順に A = 1, B = −1 が求まる．
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(3)

∫
1

4 + 5 cos x
dx =

∫
1

4 + 5 · 1− t2

1 + t2

· 2

1 + t2
dt

=

∫
2

9− t2
dt

=

∫
−2

(t+ 3)(t− 3)
dt

=

∫
1

3

(
1

t+ 3
− 1

t− 3

)
dt

=
1

3
(log |t+ 3| − log |t− 3|)

※
−2

(t+ 3)(t− 3)
=

A

t+ 3
+

B

t− 3

と分解の形を決めてから分母をはらうと

−2 = A(t− 3) +B(t+ 3)

t = −3, 3 を代入すれば，順に A =
1

3
, B = − 1

3
が求まる．

(4)

∫
1

1 + sin x
dx =

∫
1

1 +
2t

1 + t2

· 2

1 + t2
dt

=

∫
2

t2 + 2t+ 1
dt

=

∫
2

(t+ 1)2
dt

= − 2

t+ 1

(5)

∫
1

3 sin x+ 4 cosx+ 5
dx =

∫
1

3 · 2t

1 + t2
+ 4 · 1− t2

1 + t2
+ 5

· 2

1 + t2
dt

=

∫
2

t2 + 6t+ 9
dt

=

∫
2

(t+ 3)2
dt

= − 2

t+ 3

72



(6)

∫
1

5 cos x+ 12 sin x+ 13
dx =

∫
1

5 · 1− t2

1 + t2
+ 12 · 2t

1 + t2
+ 13

· 2

1 + t2
dt

=

∫
1

4t2 + 12t+ 9
dt

=

∫
1

(2t+ 3)2
dt

= − 1

2(2t+ 3)

(7)

∫
1

2 + cos x
dx =

∫
1

2 +
1− t2

1 + t2

· 2

1 + t2
dt

=

∫
2

t2 + 3
dt

=

∫
2

(
√

3 )2 + t2
dt

=
2√
3

arctan
t√
3

(8)

∫
1

2 + sin x
dx =

∫
1

2 +
2t

1 + t2

· 2

1 + t2
dt

=

∫
1

t2 + t+ 1
dt

=

∫
1( √

3

2

)2

+

(
t+

1

2

)2
dt

=
1√
3

2

arctan
t+

1

2√
3

2

=
2√
3

arctan
2t+ 1√

3
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(9)

∫
5

3 sin x+ 4 cosx
dx =

∫
5

3 · 2t

1 + t2
+ 4 · 1− t2

1 + t2

· 2

1 + t2
dt

=

∫
−5

2t2 − 3t− 2
dt

=

∫
−5

(2t+ 1)(t− 2)
dt

=

∫ (
2

2t+ 1
− 1

t− 2

)
dt

= log |2t+ 1| − log |t− 2|

※
−5

(2t+ 1)(t− 2)
=

A

2t+ 1
+

B

t− 2

と分解の形を決めてから分母をはらうと

−5 = A(t− 2) +B(2t+ 1)

t = − 1

2
, 2 を代入すれば，順に A = 2, B = −1 が求まる．

(10)

∫
3 + sinx

cosx(2 + cos x)
dx =

∫ 3 +
2t

1 + t2

1− t2

1 + t2

(
2 +

1− t2

1 + t2

) · 2

1 + t2
dt

=

∫
1 + t2

1− t2
· 3(1 + t2) + 2t

2(1 + t2) + (1− t2)
· 2

1 + t2
dt

=

∫
1 + t2

1− t2
· 3t2 + 2t+ 3

t2 + 3
· 2

1 + t2
dt

=

∫
6t2 + 4t+ 6

(1− t2)(t2 + 3)
dt

=

∫
−6t2 − 4t− 6

(t+ 1)(t− 1)(t2 + 3)
dt

=

∫ (
1

t+ 1
− 2

t− 1
+

t− 3

t2 + 3

)
dt

=

∫ {
1

t+ 1
− 2

t− 1
+

1

2
· 2t

t2 + 3
− 3

(
√
3 )2 + t2

}
dt

= log |t+ 1| − 2 log |t− 1|+ 1

2
log(t2 + 3)−

√
3 arctan

t√
3

※
−6t2 − 4t− 6

(t+ 1)(t− 1)(t2 + 3)
=

A

t+ 1
+

B

t− 1
+

Ct+D

t2 + 3

と分解の形を決めてから分母をはらうと

−6t2 − 4t− 6 = A(t− 1)(t2 + 3) +B(t+ 1)(t2 + 3) + (Ct+D)(t+ 1)(t− 1)
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t = −1 を代入 −8 = −8A　　...　A = 1

t = 1 を代入 −16 = 8B　　...　B = −2

t = 0 を代入 −6 = −3A+ 3B −D

−6 = −3− 6−D　　...　D = −3

t = 2 を代入 −38 = 7A+ 21B + 3(2C +D)

−38 = 7− 42 + 6C − 9　　...　C = 1

★根号を含む有理形√
ax2 + bx+ c (a > 0) を含む有理形の積分は

　　
√

ax2 + bx+ c +
√
a x = t

と置換する．このとき

　　 x,
dx

dt
,

√
ax2 + bx+ c

を t で表し，これらを用いる．

【例題】∫
7

(8x+ 3)
√

x2 + x+ 1
dx を求めよ．

解答√
x2 + x+ 1 + x = t とおくと

√
x2 + x+ 1 = t− x · · · 1⃝

1⃝ の両辺を 2 乗すると

x2 + x+ 1 = t2 − 2tx+ x2

(2t+ 1)x = t2 − 1　　...　 x =
t2 − 1

2t+ 1
· · · 2⃝

また， 2⃝ を微分すると
dx

dt
=

2t · (2t+ 1)− (t2 − 1) · 2
(2t+ 1)2

=
2(t2 + t+ 1)

(2t+ 1)2
· · · 3⃝

さらに， 2⃝ を 1⃝ へ代入すると
√
x2 + x+ 1 = t− x = t− t2 − 1

2t+ 1
=

t2 + t+ 1

2t+ 1
· · · 4⃝

よって， 2⃝, 3⃝, 4⃝ より∫
7

(8x+ 3)
√

x2 + x+ 1
dx

=

∫
7(

8 · t2 − 1

2t+ 1
+ 3

)
t2 + t+ 1

2t+ 1

· 2(t2 + t+ 1)

(2t+ 1)2
dt

=

∫
7(2t+ 1)

8(t2 − 1) + 3(2t+ 1)
· 2

2t+ 1
dt

75



=

∫
14

8t2 + 6t− 5
dt

=

∫
14

(2t− 1)(4t+ 5)
dt

=

∫ (
2

2t− 1
− 4

4t+ 5

)
dt

= log |2t− 1| − log |4t+ 5|

= log
∣∣2√ x2 + x+ 1 + 2x− 1

∣∣− log
∣∣4√ x2 + x+ 1 + 4x+ 5

∣∣
【問題 2.6】 　
次の積分を，カッコ内の置換により求めよ．答えは，t についての積分を実行したところまで
でよいことにする（x の式にもどさなくてもよいことにする）．

(1)

∫
1√

x2 + 2x+ 3
dx

(√
x2 + 2x+ 3 + x = t

)
(2)

∫
1√

x2 + 3x+ 1
dx

(√
x2 + 3x+ 1 + x = t

)
(3)

∫
1

x
√
x2 + 1

dx
(√

x2 + 1 + x = t
)

(4)

∫
1

x
√

x2 − x− 9
dx

(√
x2 − x− 9 + x = t

)
(5)

∫
1

(x− 2)
√

x2 − 5x− 1
dx

(√
x2 − 5x− 1 + x = t

)
(6)

∫
1

(x+ 1)
√

4x2 + x+ 1
dx

(√
4x2 + x+ 1 + 2x = t

)
(7)

∫
1

x
√

2x2 + 5x+ 4
dx

(√
2x2 + 5x+ 4 +

√
2x = t

)
(8)

∫
1√

x2 + 1 − 1
dx

(√
x2 + 1 + x = t

)
(9)

∫
1

x+
√

x2 + x+ 1
dx

(√
x2 + x+ 1 + x = t

)
(10)

∫
2

x2
√
x2 + x+ 1

dx
(√

x2 + x+ 1 + x = t
)

解答
(1)

√
x2 + 2x+ 3 = t− x の両辺を 2 乗すると

x2 + 2x+ 3 = t2 − 2tx+ x2

2(t+ 1)x = t2 − 3　　...　 x =
t2 − 3

2(t+ 1)

また

dx

dt
=

1

2
· 2t · (t+ 1)− (t2 − 3) · 1

(t+ 1)2
=

t2 + 2t+ 3

2(t+ 1)2
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さらに
√
x2 + 2x+ 3 = t− x = t− t2 − 3

2(t+ 1)
=

t2 + 2t+ 3

2(t+ 1)

よって∫
1√

x2 + 2x+ 3
dx =

∫
1

t2 + 2t+ 3

2(t+ 1)

· t2 + 2t+ 3

2(t+ 1)2
dt

=

∫
1

t+ 1
dt

= log |t+ 1|

(2)
√
x2 + 3x+ 1 = t− x の両辺を 2 乗すると

x2 + 3x+ 1 = t2 − 2tx+ x2

(2t+ 3)x = t2 − 1　　...　 x =
t2 − 1

2t+ 3

また

dx

dt
=

2t · (2t+ 3)− (t2 − 1) · 2
(2t+ 3)2

=
2(t2 + 3t+ 1)

(2t+ 3)2

さらに
√
x2 + 3x+ 1 = t− x = t− t2 − 1

2t+ 3
=

t2 + 3t+ 1

2t+ 3

よって∫
1√

x2 + 3x+ 1
dx =

∫
1

t2 + 3t+ 1

2t+ 3

· 2(t2 + 3t+ 1)

(2t+ 3)2
dt

=

∫
2

2t+ 3
dt

= log |2t+ 3|

(3)
√
x2 + 1 = t− x の両辺を 2 乗すると

x2 + 1 = t2 − 2tx+ x2

2tx = t2 − 1　　...　 x =
t2 − 1

2t

(
=

1

2

(
t− 1

t

))
また

dx

dt
=

1

2

(
1 +

1

t2

)
=

t2 + 1

2t2

さらに
√
x2 + 1 = t− x = t− t2 − 1

2t
=

t2 + 1

2t

よって
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∫
1

x
√
x2 + 1

dx =

∫
1

t2 − 1

2t
· t2 + 1

2t

· t2 + 1

2t2
dt

=

∫
2

t2 − 1
dt

=

∫
2

(t− 1)(t+ 1)
dt

=

∫ (
1

t− 1
− 1

t+ 1

)
dt

= log |t− 1| − log |t+ 1|

(4)
√
x2 − x− 9 = t− x の両辺を 2 乗すると

x2 − x− 9 = t2 − 2tx+ x2

(2t− 1)x = t2 + 9　　...　 x =
t2 + 9

2t− 1

また

dx

dt
=

2t · (2t− 1)− (t2 + 9) · 2
(2t− 1)2

=
2(t2 − t− 9)

(2t− 1)2

さらに
√
x2 − x− 9 = t− x = t− t2 + 9

2t− 1
=

t2 − t− 9

2t− 1

よって∫
1

x
√
x2 − x− 9

dx =

∫
1

t2 + 9

2t− 1
· t2 − t− 9

2t− 1

· 2(t2 − t− 9)

(2t− 1)2
dt

=

∫
2

t2 + 9
dt

=

∫
2

32 + t2
dt

=
2

3
arctan

t

3

(5)
√
x2 − 5x− 1 = t− x の両辺を 2 乗すると

x2 − 5x− 1 = t2 − 2tx+ x2

(2t− 5)x = t2 + 1　　...　 x =
t2 + 1

2t− 5

また

dx

dt
=

2t · (2t− 5)− (t2 + 1) · 2
(2t− 5)2

=
2(t2 − 5t− 1)

(2t− 5)2

さらに
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√
x2 − 5x− 1 = t− x = t− t2 + 1

2t− 5
=

t2 − 5t− 1

2t− 5

よって∫
1

(x− 2)
√
x2 − 5x− 1

dx =

∫
1(

t2 + 1

2t− 5
− 2

)
t2 − 5t− 1

2t− 5

· 2(t2 − 5t− 1)

(2t− 5)2
dt

=

∫
2t− 5

(t2 + 1)− 2(2t− 5)
· 2

2t− 5
dt

=

∫
2

t2 − 4t+ 11
dt

=

∫
2

(
√

7 )2 + (t− 2)2
dt

=
2√
7

arctan
t− 2√

7

(6)
√
4x2 + x+ 1 = t− 2x の両辺を 2 乗すると

4x2 + x+ 1 = t2 − 4tx+ 4x2

(4t+ 1)x = t2 − 1　　...　 x =
t2 − 1

4t+ 1

また

dx

dt
=

2t · (4t+ 1)− (t2 − 1) · 4
(4t+ 1)2

=
2(2t2 + t+ 2)

(4t+ 1)2

さらに
√
4x2 + x+ 1 = t− 2x = t− 2 · t2 − 1

4t+ 1
=

2t2 + t+ 2

4t+ 1

よって∫
1

(x+ 1)
√

4x2 + x+ 1
dx =

∫
1(

t2 − 1

4t+ 1
+ 1

)
2t2 + t+ 2

4t+ 1

· 2(2t2 + t+ 2)

(4t+ 1)2
dt

=

∫
4t+ 1

(t2 − 1) + (4t+ 1)
· 2

4t+ 1
dt

=

∫
2

t2 + 4t
dt

=

∫
2

t(t+ 4)
dt

=

∫
1

2

(
1

t
− 1

t+ 4

)
dt

=
1

2

(
log |t| − log |t+ 4|

)
(7)

√
2x2 + 5x+ 4 = t−

√
2x の両辺を 2 乗すると
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2x2 + 5x+ 4 = t2 − 2
√
2 tx+ 2x2

(2
√

2 t+ 5)x = t2 − 4　　...　 x =
t2 − 4

2
√

2 t+ 5

また

dx

dt
=

2t · (2
√

2 t+ 5)− (t2 − 4) · 2
√

2

(2
√

2 t+ 5)2
=

2(
√
2 t2 + 5t+ 4

√
2 )

(2
√
2 t+ 5)2

さらに

√
2x2 + 5x+ 4 = t−

√
2x = t−

√
2 (t2 − 4)

2
√
2 t+ 5

=

√
2 t2 + 5t+ 4

√
2

2
√

2 t+ 5

よって∫
1

x
√
2x2 + 5x+ 4

dx =

∫
1

t2 − 4

2
√

2 t+ 5
·
√

2 t2+5t+4
√

2

2
√

2 t+ 5

· 2(
√
2 t2+5t+4

√
2 )

(2
√

2 t+ 5)2
dt

=

∫
2

t2 − 4
dt

=

∫
2

(t− 2)(t+ 2)
dt

=

∫
1

2

(
1

t− 2
− 1

t+ 2

)
dt

=
1

2

(
log |t− 2| − log |t+ 2|

)
(8) (3) で導いた

dx

dt
=

t2 + 1

2t2
,
√
x2 + 1 =

t2 + 1

2t

を用いると∫
1√

x2 + 1 − 1
dx =

∫
1

t2 + 1

2t
− 1

· t2 + 1

2t2
dt

=

∫
2t

(t2 + 1)− 2t
· t2 + 1

2t2
dt

=

∫
t2 + 1

t(t− 1)2
dt

=

∫ {
1

t
+

2

(t− 1)2

}
dt

= log |t| − 2

t− 1

※
t2 + 1

t(t− 1)2
=

A

t
+

B

t− 1
+

C

(t− 1)2

と分解の形を決めてから分母をはらうと
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t2 + 1 = A(t− 1)2 +Bt(t− 1) + Ct

t = 0 を代入 1 = A

t = 1 を代入 2 = C

t = −1 を代入 2 = 4A+ 2B − C

2 = 4 + 2B − 2　　...　B = 0

(9) 例題で導いた

dx

dt
=

2(t2 + t+ 1)

(2t+ 1)2

を用いると∫
1

x+
√

x2 + x+ 1
dx =

∫
1

t
· 2(t2 + t+ 1)

(2t+ 1)2
dt

=

∫
2(t2 + t+ 1)

t(2t+ 1)2
dt

=

∫ {
2

t
− 3

2t+ 1
− 3

(2t+ 1)2

}
dt

= 2 log |t| − 3

2
log |2t+ 1|+ 3

2(2t+ 1)

※
2(t2 + t+ 1)

(2t+ 1)2
=

A

t
+

B

2t+ 1
+

C

(2t+ 1)2

と分解の形を決めてから分母をはらうと

2(t2 + t+ 1) = A(2t+ 1)2 +Bt(2t+ 1) + Ct

t = 0 を代入 2 = A

t = − 1

2
を代入

3

2
= − 1

2
C　　...　C = −3

t = 1 を代入 6 = 9A+ 3B + C

6 = 18 + 3B − 3　　...　B = −3

(10) 例題で導いた

x =
t2 − 1

2t+ 1
,

dx

dt
=

2(t2 + t+ 1)

(2t+ 1)2
,
√

x2 + x+ 1 =
t2 + t+ 1

2t+ 1

を用いると
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∫
2

x2
√
x2 + x+ 1

dx =

∫
2(

t2 − 1

2t+ 1

)2
t2 + t+ 1

2t+ 1

· 2(t2 + t+ 1)

(2t+ 1)2
dt

=

∫
8t+ 4

(t2 − 1)2
dt

=

∫
8t+ 4

(t− 1)2(t+ 1)2
dt

=

∫ {
− 1

t− 1
+

3

(t− 1)2
+

1

t+ 1
− 1

(t+ 1)2

}
dt

= − log |t− 1| − 3

t− 1
+ log |t+ 1|+ 1

t+ 1

※
8t+ 4

(t− 1)2(t+ 1)2
=

A

t− 1
+

B

(t− 1)2
+

C

t+ 1
+

D

(t+ 1)2

と分解の形を決めてから分母をはらうと

8t+ 4 = A(t− 1)(t+ 1)2 +B(t+ 1)2 + C(t− 1)2(t+ 1) +D(t− 1)2

t = 1 を代入 12 = 4B　　...　B = 3

t = −1 を代入 −4 = 4D　...　D = −1

t = 0 を代入 4 = −A+B + C +D

4 = −A+ 3 + C − 1　　...　C = A+ 2

t3 の係数比較 0 = A+ C

0 = A+ (A+ 2)　　...　A = −1, C = 1

★定積分
連続関数 f(x) の原始関数のひとつを F (x) とするとき，定積分は

　　
∫ b

a

f(x)dx =
[
F (x)

]b
a
= F (b)− F (a)

で計算する（積分してから数値の代入）．

【問題 2.7】 　
次を求めよ．

(1)

∫ 2

0

(x2 − 2x+ 3)dx (2)

∫ 3

−1

(3x2 − 6x+ 1)dx

(3)

∫ 2

−1

(2x2 + x− 6)dx (4)

∫ 3

2

x3 + 3x2 − 2x+ 4

x2
dx

(5)

∫ π
4

π
6

1

cos2 x
dx (6)

∫ π
4

0

sin 3x cos xdx

82



(7)

∫ e3

e2
log xdx (8)

∫ 2

1

xexdx

(9)

∫ 3

−1

(2x+ 1)e−xdx (10)

∫ 2

1

x4 log xdx

(11)

∫ e

1

(log x)2dx (12)

∫ 1

0

1− 2x

1 + x2
dx

(13)

∫ √
3

2

0

1√
1− x2

dx (14)

∫ 3

−1

(x+ 1)2(x− 3)dx

(15)

∫ π
2

0

∣∣∣∣cosx− 1

2

∣∣∣∣ dx (16)

∫ π
2

π
6

(3x− cos x)2dx

(17)

∫ √
3

−3

1

9 + x2
dx (18)

∫ e2

e

(log x)2

x
dx

(19)

∫ 2

0

x√
x2 + 4

dx (20)

∫ 4

−1

x
√
x2 + 4 dx

(21)

∫ √
3

1

arctanxdx (22)

∫ 1√
3

−1

arctanxdx

(23)

∫ 1
2

0

arcsinxdx (24)

∫ 1√
2

− 1
2

arcsin xdx

(25)

∫ √
3

− 1√
3

2x arctanxdx (26)

∫ 1

0

2x(arctanx)2dx

(27)

∫ 4

2

2x+ 1

x2 − 4x+ 8
dx

解答

(1)

∫ 2

0

(x2 − 2x+ 3)dx =

[
1

3
x3 − x2 + 3x

]2
0

=
1

3
(8− 0)− (4− 0) + 3(2− 0)

=
14

3

(2)

∫ 3

−1

(3x2 − 6x+ 1)dx =
[
x3 − 3x2 + x

]3
−1

= {27− (−1)} − 3(9− 1) + {3− (−1)}

= 8

83



(3)

∫ 2

−1

(2x2 + x− 6)dx =

[
2

3
x3 +

1

2
x2 − 6x

]2
−1

=
2

3
{8− (−1)}+ 1

2
(4− 1)− 6{2− (−1)}

= − 21

2

(4)

∫ 3

2

x3 + 3x2 − 2x+ 4

x2
dx =

∫ 3

2

(
x+ 3− 2

x
+

4

x2

)
dx

=

[
1

2
x2 + 3x− 2 log |x| − 4

x

]3
2

=
1

2
(9− 4) + 3(3− 2)− 2(log 3− log 2)− 4

(
1

3
− 1

2

)
=

37

6
− 2 log

3

2

(5)

∫ π
4

π
6

1

cos2 x
dx =

[
tanx

] π
4

π
6

= tan
π

4
− tan

π

6
= 1− 1√

3

(6)

∫ π
4

0

sin 3x cos xdx =

∫ π
4

0

1

2
(sin 4x+ sin 2x)dx

=

[
1

2

(
− 1

4
cos 4x− 1

2
cos 2x

)] π
4

0

= − 1

8
(cos π − cos 0)− 1

4

(
cos

π

2
− cos 0

)
= − 1

8
{(−1)− 1} − 1

4
(0− 1)

=
1

2

(7)

∫ e3

e2
log xdx =

[
x log x− x

]e3
e2

= (e3 log e3 − e2 log e2)− (e3 − e2)

= (e3 · 3− e2 · 2)− (e3 − e2)

= 2e3 − e2

(8)

∫
xexdx = xex −

∫
exdx

= xex − ex

x ex

1 ex

�
�

�	

@
@
@R

　　
であるから
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∫ 2

1

xexdx =
[
xex − ex

]2
1
= (2e2 − 1 · e)− (e2 − e) = e2

(9)

∫
(2x+ 1)e−xdx = −(2x+ 1)e−x + 2

∫
e−xdx

= −(2x+ 1)e−x − 2e−x

= −2xe−x − 3e−x

2x+ 1 −e−x

2 e−x

�
�

�	

@
@
@R

　　

であるから∫ 3

−1

(2x+ 1)e−xdx =
[
−2xe−x − 3e−x

]3
−1

= −2{3e−3 − (−1) · e} − 3(e−3 − e)

= e− 9

e3

(10)

∫
x4 log xdx =

1

5
x5 log x− 1

5

∫
x4dx

=
1

5
x5 log x− 1

25
x5

log x
1

5
x5

1

x
x4

�
�

�	

@
@
@R

　　

であるから∫
x4 log xdx =

[
1

5
x5 log x− 1

25
x5

]2
1

=
1

5
(32 log 2− 1 · log 1)− 1

25
(32− 1)

=
1

5
(32 log 2− 1 · 0)− 1

25
(32− 1)

=
32

5
log 2− 31

25

(11)

∫
(log x)2dx = x(log x)2 − 2

∫
log xdx

= x(log x)2 − 2

(
x log x−

∫
dx

)
= x(log x)2 − 2(x log x− x)

= x(log x)2 − 2x log x+ 2x

(log x)2 x

2 log x · 1

x
1

�
�

�	

@
@
@R

　　

log x x

1

x
1

�
�

�	

@
@
@R

　　

であるから
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∫ e

1

(log x)2dx =
[
x(log x)2 − 2x log x+ 2x

]e
1

= {e(log e)2 − 1 · (log 1)2} − 2(e log e− 1 · log 1) + 2(e− 1)

= (e · 12 − 1 · 02)− 2(e · 1− 1 · 0) + 2(e− 1)

= e− 2

(12)

∫ 1

0

1− 2x

1 + x2
dx =

∫ 1

0

(
1

1 + x2
− 2x

1 + x2

)
dx

=
[
arctanx− log(1 + x2)

]1
0

= (arctan 1− arctan 0)− (log 2− log 1)

=
( π

4
− 0
)
− (log 2− 0)

=
π

4
− log 2

(13)

∫ √
3

2

0

1√
1− x2

dx =
[
arcsinx

] √
3

2

0
= arcsin

√
3

2
− arcsin 0 =

π

3
− 0 =

π

3

(14)

∫
(x+ 1)2(x− 3)dx =

1

3
(x+ 1)3(x− 3)− 1

3

∫
(x+ 1)3dx

=
1

3
(x+ 1)3(x− 3)− 1

12
(x+ 1)4

x− 3
1

3
(x+ 1)3

1 (x+ 1)2

�
�

�	

@
@
@R

　　

であるから∫ 3

−1

(x+ 1)2(x− 3)dx =

[
1

3
(x+ 1)3(x− 3)− 1

12
(x+ 1)4

]3
−1

=
1

3
{64 · 0− 0 · (−4)} − 1

12
(256− 0)

= − 64

3

(15)

∫ π
2

0

∣∣∣∣cosx− 1

2

∣∣∣∣ dx =

∫ π
3

0

(
cos x− 1

2

)
dx+

∫ π
2

π
3

(
1

2
− cosx

)
dx

=
[
sin x− x

2

] π
3

0
+
[ x
2

− sin x
] π

2

π
3

=

( √
3

2
− 0

)
− 1

2

( π

3
− 0
)
+

1

2

( π

2
− π

3

)
−

(
1−

√
3

2

)
=

√
3 − π

12
− 1
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(16)

∫
(3x− cosx)2dx

=

∫
(9x2 − 6x cos x+ cos2 x)dx

= 3x3 − 6

(
x sinx−

∫
sin xdx

)
+

∫
1 + cos 2x

2
dx

= 3x3 − 6(x sinx+ cos x) +
1

2

(
x+

1

2
sin 2x

)
= 3x3 +

1

2
x− 6x sin x− 6 cos x+

1

4
sin 2x

x sin x

1 cos x

�
�

�	

@
@
@R

　　

であるから∫ π
2

π
6

(3x− cosx)2dx =

[
3x3 +

1

2
x− 6x sinx− 6 cos x+

1

4
sin 2x

] π
2

π
6

= 3

(
π3

8
− π3

216

)
+

1

2

( π

2
− π

6

)
− 6

( π

2
sin

π

2
− π

6
sin

π

6

)
　　　− 6

(
cos

π

2
− cos

π

6

)
+

1

4

(
sin π − sin

π

3

)
= 3

(
π3

8
− π3

216

)
+

1

2

( π

2
− π

6

)
− 6

(
π

2
· 1− π

6
· 1

2

)

　　　− 6

(
0−

√
3

2

)
+

1

4

(
0−

√
3

2

)

=
13

36
π3 − 7

3
π +

23
√
3

8

(17)

∫ √
3

−3

1

9 + x2
dx =

∫ √
3

−3

1

32 + x2
dx

=

[
1

3
arctan

x

3

]√ 3

−3

=
1

3

{
arctan

1√
3

− arctan(−1)

}
=

1

3

{ π

6
−
(
− π

4

)}
=

5

36
π
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(18)

∫ e2

e

(log x)2

x
dx =

∫ e2

e

(log x)2 · 1

x
dx

=

[
1

3
(log x)3

]e2
e

=
1

3

{
(log e2)3 − (log e)3

}
=

1

3
(23 − 13)

=
7

3

(19)

∫ 2

0

x√
x2 + 4

dx =
1

2

∫ 2

0

(x2 + 4)−
1
2 · 2xdx =

1

2

[
2(x2 + 4)

1
2

]2
0
= 2

√
2 − 2

(20)

∫ 4

−1

x
√
x2 + 4 dx =

1

2

∫ 4

−1

(x2 + 4)
1
2 · 2xdx

=
1

2

[
2

3
(x2 + 4)

3
2

]4
−1

=
1

3

(
40
√
5 − 5

√
5
)

=
35
√
5

3

(21)

∫
arctanxdx = x arctanx−

∫
x

1 + x2
dx

= x arctanx− 1

2

∫
2x

1 + x2
dx

= x arctanx− 1

2
log(1 + x2)

arctanx x

1

1 + x2
1

�
�

�	

@
@
@R

　　

であるから∫ √
3

1

arctanxdx =

[
x arctanx− 1

2
log(1 + x2)

]√ 3

1

=
(√

3 · arctan
√
3 − 1 · arctan 1

)
− 1

2
(log 4− log 2)

=
(√

3 · π

3
− 1 · π

4

)
− 1

2
log

4

2

=
π√
3

− π

4
− 1

2
log 2
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(22)

∫ 1√
3

−1

arctanxdx =

[
x arctanx− 1

2
log(1 + x2)

] 1√
3

−1

=

{
1√
3

· arctan 1√
3

− (−1) · arctan(−1)

}
− 1

2

(
log

4

3
− log 2

)
=

{
1√
3

· π

6
− (−1) ·

(
− π

4

)}
− 1

2
log

4
3

2

=
π

6
√
3

− π

4
− 1

2
log

2

3

(11)

∫
arcsinxdx = x arcsin x−

∫
x√

1− x2
dx

= x arcsin x+
1

2

∫
(1− x2)−

1
2 · (−2x)dx

= x arcsin x+
1

2
· 2(1− x2)

1
2

= x arcsin x+
√
1− x2

arcsinx x

1√
1− x2

1

�
�

�	

@
@
@R

　　

であるから∫ 1
2

0

arcsin xdx =
[
x arcsin x+

√
1− x2

] 1
2

0

=

(
1

2
· arcsin 1

2
− 0 · arcsin 0

)
+

( √
3

2
− 1

)

=

(
1

2
· π

6
− 0 · 0

)
+

( √
3

2
− 1

)

=
π

12
+

√
3

2
− 1

(24)

∫ 1√
2

− 1
2

arcsinxdx

=
[
x arcsinx+

√
1− x2

] 1√
2

− 1
2

=

{
1√
2

· arcsin 1√
2

−
(
− 1

2

)
· arcsin

(
− 1

2

)}
+

(
1√
2

−
√

3

2

)

=

{
1√
2

· π

4
−
(
− 1

2

)
·
(
− π

6

)}
+

(
1√
2

−
√

3

2

)

=
π

4
√
2

− π

12
+

1√
2

−
√

3

2
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(25)

∫
2x arctanxdx = (x2 + 1) arctanx−

∫
dx

= (x2 + 1) arctanx− x

arctanx x2 + 1

1

1 + x2
2x

�
�

�	

@
@
@R

　　

であるから∫ √
3

− 1√
3

2x arctanxdx =
[
(x2 + 1) arctanx− x

]√ 3

− 1√
3

=

{
4 · arctan

√
3 − 4

3
· arctan

(
− 1√

3

)}
−
{√

3 −
(
− 1√

3

)}
=

{
4 · π

3
− 4

3
·
(
− π

6

)}
−
{√

3 −
(
− 1√

3

)}
=

14

9
π − 4

√
3

3

(26)

∫
2x(arctanx)2dx

= (x2 + 1)(arctanx)2 − 2

∫
arctanxdx

= (x2 + 1)(arctanx)2 − 2

{
x arctanx− 1

2
log(1 + x2)

}
= (x2 + 1)(arctanx)2 − 2x arctanx+ log(1 + x2)

(arctan x)2 x2 + 1

2 arctanx · 1

1 + x2
2x

�
�

�	

@
@
@R

　　

であるから∫ 1

0

2x(arctanx)2dx =
[
(x2 + 1)(arctanx)2 − 2x arctanx+ log(1 + x2)

]1
0

=

{
2 ·
( π

4

)2
− 1 · 02

}
− 2

(
1 · π

4
− 0 · 0

)
+ (log 2− 0)

=
π2

8
− π

2
+ log 2

(27)

∫
2x+ 1

x2 − 4x+ 8
dx =

∫
(2x− 4) + 5

x2 − 4x+ 8
dx

=

∫ {
2x− 4

x2 − 4x+ 8
+

5

22 + (x−2)2

}
dx

= log(x2 − 4x+ 8) +
5

2
arctan

x− 2

2

であるから
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∫ 4

2

2x+ 1

x2 − 4x+ 8
dx =

[
log(x2 − 4x+ 8) +

5

2
arctan

x− 2

2

]4
2

= (log 8− log 4) +
5

2
(arctan 1− arctan 0)

= log
8

4
+

5

2

( π

4
− 0
)

= log 2 +
5

8
π

★広義積分
(1) f が [a,∞) で連続なとき

　　
∫ ∞

a

f(x)dx = lim
R→∞

∫ R

a

f(x)dx

(2) f が (a, b] で連続なとき

　　
∫ b

a

f(x)dx = lim
ε→+0

∫ b

a+ε

f(x)dx

【問題 2.8】 　
次の広義積分を求めよ．

(1)

∫ ∞

0

1

x2 + 1
dx (2)

∫ ∞

0

xe−2xdx

(3)

∫ ∞

e

log x

x2
dx (4)

∫ ∞

0

1

x2 − x+ 1
dx

(5)

∫ ∞

0

e−3x cos xdx (6)

∫ 1
2

−1

1√
1− x2

dx

(7)

∫ 1

0

log x√
x

dx (8)

∫ 3

0

(2x+ 1) log xdx

(9)

∫ ∞

1

log x

(x+ 1)2
dx (10)

∫ 1

0

log x

(x+ 1)2
dx

(11)

∫ ∞

1

4

x4 + x2 + 1
dx

解答

(1)

∫ R

0

1

x2 + 1
dx =

[
arctanx

]R
0
= arctanR− 0 = arctanR

であるから∫ ∞

0

1

x2 + 1
dx = lim

R→∞
arctanR =

π

2

※ lim
x→∞

arctanx =
π

2
であることはグラフからわかる．
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(2)

∫
xe−2xdx = − 1

2
xe−2x +

1

2

∫
e−2xdx

= − 1

2
xe−2x − 1

4
e−2x

x − 1

2
e−2x

1 e−2x

�
�

�	

@
@
@R

　
であるから∫ R

0

xe−2xdx =
[
− 1

2
xe−2x − 1

4
e−2x

]R
0

= − 1

2
(Re−2R − 0 · 1)− 1

4
(e−2R − 1)

=
1

4
− 1

2
Re−2R − 1

4
e−2R

よって∫ ∞

0

xe−2xdx = lim
R→∞

(
1

4
− 1

2
Re−2R − 1

4
e−2R

)
=

1

4

※ lim
x→∞

xe−2x = lim
x→∞

x

e2x
∗
= lim

x→∞

1

2e2x
= 0

ここで，「 ∗
=」のところで

ロ ピ タ ル

L’Hospital の定理を用いた．以降の問題も同様．

(3)

∫
log x

x2
dx = − log x

x
+

∫
1

x2
dx

= − log x

x
− 1

x

log x − 1

x
1

x

1

x2

�
�

�	

@
@
@R

　
であるから∫ R

e

log x

x2
dx =

[
− log x

x
− 1

x

]R
e

= −
(

logR

R
− 1

e

)
−
(

1

R
− 1

e

)
=

2

e
− logR

R
− 1

R

よって∫ ∞

e

log x

x2
dx = lim

R→∞

(
2

e
− logR

R
− 1

R

)
=

2

e

※ lim
x→∞

log x

x
∗
= lim

x→∞

1

x
1

= lim
x→∞

1

x
= 0
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(4)

∫
1

x2 − x+ 1
dx =

∫
1( √

3

2

)2

+

(
x− 1

2

)2
dx

=
1√
3

2

arctan
x− 1

2√
3

2

=
2√
3

arctan
2x− 1√

3

であるから∫ R

0

1

x2 − x+ 1
dx =

[
2√
3

arctan
2x− 1√

3

]R
0

=
2√
3

{
arctan

2R− 1√
3

−
(
− π

6

)}
=

2√
3

(
π

6
+ arctan

2R− 1√
3

)
よって∫ ∞

0

1

x2 − x+ 1
dx = lim

R→∞

2√
3

(
π

6
+ arctan

2R− 1√
3

)
=

2√
3

( π

6
+

π

2

)
=

4

3
√
3
π

(5)

∫
e−3x cosxdx

= e−3x sinx+ 3

∫
e−3x sinxdx

= e−3x sinx+ 3

(
−e−3x cos x− 3

∫
e−3x cosxdx

)
= e−3x sinx− 3e−3x cos x− 9

∫
e−3x cosxdx︸ ︷︷ ︸
移項

e−3x sin x

−3e−3x cos x

�
�

�	

@
@
@R

　　

e−3x − cos x

−3e−3x sin x

�
�

�	

@
@
@R

　　

であるから∫
e−3x cosxdx =

1

10
(e−3x sin x− 3e−3x cos x)

よって∫ R

0

e−3x cos xdx =

[
1

10
(e−3x sin x− 3e−3x cos x)

]R
0

=
1

10
(e−3R sinR− 1 · 0)− 3

10
(e−3R cosR− 1 · 1)

=
3

10
+

1

10
e−3R sinR− 3

10
e−3R cosR

ゆえに∫ ∞

0

e−3x cos xdx = lim
R→∞

(
3

10
+

1

10
e−3R sinR− 3

10
e−3R cosR

)
=

3

10
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※ |e−3x sin x| <= e−3x, |e−3x cosx| <= e−3x, lim
x→∞

e−3x = 0 であるから，はさみうちの定理より

lim
x→∞

e−3x sinx = 0, lim
x→∞

e−3x cosx = 0

(6)

∫ 1
2

−1+ε

1√
1− x2

dx =
[
arcsinx

] 1
2

−1+ε
=

π

6
− arcsin(−1 + ε)

であるから∫ 1
2

−1

1√
1− x2

dx = lim
ε→+0

{ π

6
− arcsin(−1 + ε)

}
=

π

6
−
(
− π

2

)
=

2

3
π

(7)

∫
log x√

x
dx = 2

√
x log x− 2

∫
1√
x
dx

= 2
√

x log x− 4
√
x

log x 2
√

x

1

x

1√
x

�
�

�	

@
@
@R

　　

であるから∫ 1

ε

log x√
x

dx =
[
2
√

x log x− 4
√

x
]1
ε

= 2
(
1 · 0−

√
ε log ε

)
− 4
(
1−

√
ε
)

= −4− 2
√
ε log ε+ 4

√
ε

よって∫ 1

0

log x√
x

dx = lim
ε→+0

(
−4− 2

√
ε log ε+ 4

√
ε
)
= −4

※ α > 0 のとき

lim
x→+0

xα log x = lim
x→+0

log x

x−α

∗
= lim

x→+0

1

x
−αx−α−1

= lim
x→+0

xα

−α
= 0

(8)

∫
(2x+ 1) log xdx = (x2 + x) log x−

∫
(x+ 1)dx

= (x2 + x) log x− 1

2
x2 − x

log x x2 + x

1

x
2x+ 1

�
�

�	

@
@
@R

　　

であるから∫ 3

ε

(2x+ 1) log xdx =

[
(x2 + x) log x− 1

2
x2 − x

]3
ε

= {12 log 3− (ε2 + ε) log ε} − 1

2
(9− ε2)− (3− ε)

= 12 log 3− 15

2
− ε2 log ε− ε log ε+

1

2
ε2 + ε

よって∫ 3

0

(2x+ 1) log xdx = lim
ε→+0

(
12 log 3− 15

2
− ε2 log ε− ε log ε+

1

2
ε2 + ε

)
= 12 log 3− 15

2
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(9)

∫
log x

(x+ 1)2
dx = − log x

x+ 1
+

∫
1

x(x+ 1)
dx

= − log x

x+ 1
+

∫ (
1

x
− 1

x+ 1

)
dx

= − log x

x+ 1
+ log x− log(x+ 1)

log x − 1

x+ 1
1

x

1

(x+ 1)2

�
�

�	

@
@
@R

　　

であるから∫ R

1

log x

(x+ 1)2
dx =

[
− log x

x+ 1
+ log x− log(x+ 1)

]R
1

= −
(

logR

R + 1
− 0

2

)
+ (logR− 0)− {log(R + 1)− log 2}

= log 2 + log
R

R + 1
− logR

R + 1

よって∫ ∞

1

log x

(x+ 1)2
dx = lim

R→∞

(
log 2 + log

1

1 + 1
R

− logR

R + 1

)
= log 2

※ lim
x→∞

log x

x+ 1
∗
= lim

x→∞

1
x

1
= lim

x→∞

1

x
= 0

(10)

∫
log x

(x+ 1)2
dx = − log x

x+ 1
+ log x− log(x+ 1) =

x log x

x+ 1
− log(x+ 1)

であるから∫ 1

ε

log x

(x+ 1)2
dx =

[
x log x

x+ 1
− log(x+ 1)

]1
ε

=

(
1 · 0
2

− ε log ε

ε+ 1

)
− {log 2− log(ε+1)}

= − log 2 + log(ε+ 1)− ε log ε

ε+ 1

よって∫ 1

0

log x

(x+ 1)2
dx = lim

ε→+0

{
− log 2 + log(ε+ 1)− ε log ε

ε+ 1

}
= − log 2

※ lim
x→+0

x log x = lim
x→+0

log x
1
x

∗
= lim

x→+0

1
x

− 1
x2

= lim
x→+0

(−x) = 0

(11)
4

x4 + x2 + 1
=

Ax+B

x2 + x+ 1
+

Cx+D

x2 − x+ 1

が常に成り立つような定数 A,B,C,D を求めると，A = 2, B = 2, C = −2, D = 2であるから∫
4

x4 + x2 + 1
dx

=

∫ (
2x+ 2

x2 + x+ 1
− 2x− 2

x2 − x+ 1

)
dx
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=

∫ {
(2x+ 1) + 1

x2 + x+ 1
− (2x− 1)− 1

x2 − x+ 1

}
dx

=

∫ {
2x+ 1

x2 + x+ 1
+

1

(
√

3
2
)2 + (x+ 1

2
)2

− 2x− 1

x2 − x+ 1
+

1

(
√

3
2
)2 + (x− 1

2
)2

}
dx

= log(x2 + x+ 1) +
1

√
3
2

arctan
x+ 1

2√
3
2

− log(x2 + x+ 1) +
1

√
3
2

arctan
x− 1

2√
3
2

= log
x2 + x+ 1

x2 − x+ 1
+

2√
3

arctan
2x+ 1√

3
+

2√
3

arctan
2x− 1√

3

であるから∫ R

1

4

x4 + x2 + 1
dx

=

[
log

x2 + x+ 1

x2 − x+ 1
+

2√
3

arctan
2x+ 1√

3
+

2√
3

arctan
2x− 1√

3

]R
1

=

(
log

R2 +R + 1

R2 −R + 1
− log 3

)
+

2√
3

(
arctan

2R + 1√
3

− π

3

)
+

2√
3

(
arctan

2R− 1√
3

− π

6

)
よって∫ ∞

1

4

x4 + x2 + 1
dx = lim

R→∞

{(
log

1 + 1
R
+ 1

R2

1− 1
R
+ 1

R2

− log 3

)
　　　　　　　+

2√
3

(
arctan

2R + 1√
3

− π

3

)

　　　　　　　　　　+
2√
3

(
arctan

2R− 1√
3

− π

6

)}

= (0− log 3) +
2√
3

( π

2
− π

3

)
+

2√
3

( π

2
− π

6

)
=

π√
3

− log 3
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§3. 2 変数関数の偏微分

★ 2 変数関数の極値判定法
f(x, y)：C2 級，(a, b) ∈ R2

(1) f(a, b)：極値 =⇒ fx(a, b) = 0, fy(a, b) = 0

(2) fx(a, b) = 0, fy(a, b) = 0 のとき
H(a, b) > 0, fxx(a, b) > 0 =⇒ f(a, b)：極小値
H(a, b) > 0, fxx(a, b) < 0 =⇒ f(a, b)：極大値
H(a, b) < 0 =⇒ f(a, b)：極値でない
ただし H(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)

2 とする．

☆まずは連立方程式 fx(x, y) = 0, fy(x, y) = 0 を解いて停留点を求める．次に停留点に対して
H(x, y), fxx(x, y) の符号を調べて極値の判定をする．

【例題】
次の関数の停留点を求め，極値の判定をせよ．

(1) f(x, y) = x3 + x2y − xy − y2 (2) f(x, y) = 3x2y + y3 − 3x2 − 3y2

(3) f(x, y) = x3 + y3 + x2 + y2 + xy

解答
(1) f(x, y) = x3 + x2y − xy − y2

停留点{
fx(x, y) = 3x2 + 2xy − y = 0　 · · · 1⃝
fy(x, y) = x2 − x− 2y = 0　 · · · 2⃝

2⃝ より　 y =
x2 − x

2

1⃝ へ代入すると

　　 3x2 + 2x · x2 − x

2
− x2 − x

2
= 0

　　 6x2 + 2x(x2 − x)− (x2 − x) = 0

　　 2x3 + 3x2 + x = 0

　　 x(x+ 1)(2x+ 1) = 0　　...　 x = 0,−1,− 1

2

x = 0 のとき， 2⃝ より　 y = 0

x = −1 のとき， 2⃝ より　 y = 1

x = − 1

2
のとき， 2⃝ より　 y =

3

8

よって，停留点は　 (0, 0), (−1, 1),

(
− 1

2
,
3

8

)
判定
fxx(x, y) = 6x+ 2y, fyy(x, y) = −2, fxy(x, y) = 2x− 1

H(x, y) = (6x+ 2y) · (−2)− (2x− 1)2
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・H(0, 0) = 0 · (−2)− (−1)2 = −1 < 0　　...　 f(0, 0)：極値でない
・H(−1, 1) = (−4) · (−2)− (−3)2 = −1 < 0　　...　 f(−1, 1)：極値でない

・H

(
− 1

2
,
3

8

)
=

(
− 9

4

)
· (−2)− (−2)2 =

1

2
> 0, fxx

(
− 1

2
,
3

8

)
= − 9

4
< 0

　　　　　 ...　 f

(
− 1

2
,
3

8

)
=

1

64
：極大値

(2) f(x, y) = 3x2y + y3 − 3x2 − 3y2

停留点{
fx(x, y) = 6xy − 6x = 0　 · · · 1⃝
fy(x, y) = 3x2 + 3y2 − 6y = 0　 · · · 2⃝

1⃝ より　 6x(y − 1) = 0　　...　 x = 0　または　 y = 1

x = 0 のとき， 2⃝ より

　　 3y2 − 6y = 0

　　 3y(y − 2) = 0　　...　 y = 0, 2

y = 1 のとき， 2⃝ より

　　 3x2 − 3 = 0

　　 x2 = 1　　...　 x = ±1

よって，停留点は　 (0, 0), (0, 2), (±1, 1)

判定
fxx(x, y) = 6y − 6, fyy(x, y) = 6y − 6, fxy(x, y) = 6x

H(x, y) = (6y − 6)(6y − 6)− (6x)2

・H(0, 0) = (−6) · (−6)− 02 = 36 > 0, fxx(0, 0) = −6 < 0　　...　 f(0, 0) = 0：極大値

・H(0, 2) = 6 · 6− 02 = 36 > 0, fxx(0, 2) = 6 > 0　　...　 f(0, 2) = −4：極小値

・H(±1, 1) = 0 · 0− (±6)2 = −36 < 0　　...　 f(±1, 1)：極値でない

(3) f(x, y) = x3 + y3 + x2 + y2 + xy

停留点{
fx(x, y) = 3x2 + 2x+ y = 0　 · · · 1⃝
fy(x, y) = 3y2 + 2y + x = 0　 · · · 2⃝

1⃝− 2⃝ より

　　 3(x− y)(x+ y) + (x− y) = 0

　　 (x− y){3(x+ y) + 1} = 0　　...　 y = x　または　 x+ y = − 1

3

(i) y = x のとき， 1⃝ より

　　 3x2 + 3x = 0

　　 x(x+ 1) = 0　　...　 x = 0,−1
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(ii) x+ y = − 1

3
のとき， 1⃝+ 2⃝ より

　　 3{(x+ y)2 − 2xy}+ 3(x+ y) = 0

　　 3

(
1

9
− 2xy

)
− 1 = 0　　...　 xy = − 1

9

これより，x, y は t2 +
1

3
t− 1

9
= 0 すなわち 9t2 + 3t− 1 = 0 の解となる（解と係数の関係）．

実際に解くと t =
−1±

√
5

6
となるから，簡単のため

　　 α =
−1−

√
5

6
, β =

−1 +
√
5

6

とおく．このとき，α + β = − 1

3
, αβ = − 1

9
となることに注意する．

以上 (i),(ii) より，停留点は　 (0, 0), (−1,−1), (α, β), (β, α)

※ 1⃝ より y = −3x2 − 2x として，これを 2⃝ へ代入しても停留点を求めることはできる．

判定
fxx(x, y) = 6x+ 2, fyy(x, y) = 6y + 2, fxy(x, y) = 1

H(x, y) = (6x+ 2) · (6y + 2)− 12 = 36xy + 12(x+ y) + 3

・H(0, 0) = 2 · 2− 12 = 3 > 0, fxx(0, 0) = 2 > 0　　...　 f(0, 0) = 0：極小値

・H(−1,−1) = (−4) · (−4)− 12 = 15 > 0, fxx(−1,−1) = −4 < 0

　　　　　 ...　 f(−1,−1) = 1：極大値

・H(α, β) = H(β, α) = 36αβ + 12(α + β) + 3 = −4− 4 + 3 = −5 < 0

　　　　　 ...　 f(α, β), f(β, α)：極値でない

【問題 3.1】 　
次の関数の停留点を求め，極値の判定をせよ．

(1) f(x, y) = x4 + 2x2 + y3 − 3y (2) f(x, y) = x3 − 6xy + 3y2

(3) f(x, y) = x4 + y4 − 4xy (4) f(x, y) = 2x4 + y2 − 2xy

(5) f(x, y) = x4 − 4xy + 2y2 + 4x− 4y (6) f(x, y) = x3y − 3xy − y2

(7) f(x, y) = 3xy2 + y3 − 6x2 − 24x (8) f(x, y) = x2 − 2xy2 − y + 2y3

(9) f(x, y) = x2 − x2y + 2y2 − y3 (10) f(x, y) = xy − x2y − 2xy2

(11) f(x, y) = xy − x2y − xy3 (12) f(x, y) = x3y + xy3 − xy

(13) f(x, y) = x3 + y3 − 2x2 − 2y2 + xy
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解答
(1) f(x, y) = x4 + 2x2 + y3 − 3y

停留点{
fx(x, y) = 4x3 + 4x = 0　 · · · 1⃝
fy(x, y) = 3y3 − 3 = 0　 · · · 2⃝

1⃝ より　 4x(x2 + 1) = 0　　...　 x = 0（x は実数だから）
2⃝ より　 3(y2 − 1) = 0　　...　 y = ±1

よって，停留点は　 (0, 1), (0,−1)

判定
fxx(x, y) = 12x2 + 4, fyy(x, y) = 6y, fxy(x, y) = 0

H(x, y) = (12x2 + 4) · 6y − 02

・H(0, 1) = 4 · 6− 02 = 24 > 0, fxx(0, 1) = 4 > 0　　...　 f(0, 1) = −2：極小値

・H(0,−1) = 4 · (−6)− 02 = −24 < 0　　...　 f(0,−1)：極値でない

(2) f(x, y) = x3 − 6xy + 3y2

停留点{
fx(x, y) = 3x2 − 6y = 0　 · · · 1⃝
fy(x, y) = −6x+ 6y = 0　 · · · 2⃝

2⃝ より　 y = x

1⃝ へ代入すると

　　 3x2 − 6x = 0

　　 3x(x− 2) = 0　　...　 x = 0, 2

x = 0 のとき， 2⃝ より　 y = 0

x = 2 のとき， 2⃝ より　 y = 2

よって，停留点は　 (0, 0), (2, 2)

判定
fxx(x, y) = 6x, fyy(x, y) = 6, fxy(x, y) = −6

H(x, y) = 6x · 6− (−6)2

・H(0, 0) = 0 · 6− (−6)2 = −36 < 0　　...　 f(0, 0)：極値でない

・H(2, 2) = 12 · 6− (−6)2 = 36 > 0, fxx(2, 2) = 12 > 0　　...　 f(2, 2) = −4：極小値

(3) f(x, y) = x4 + y4 − 4xy

停留点{
fx(x, y) = 4x3 − 4y = 0　 · · · 1⃝
fy(x, y) = 4y3 − 4x = 0　 · · · 2⃝

1⃝ より　 y = x3
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2⃝ へ代入すると

　　 4x9 − 4x = 0

　　 4x(x8 − 1) = 0　　...　 x = 0,±1

x = 0 のとき， 1⃝ より　 y = 0

x = ±1 のとき， 1⃝ より　 y = ±1（複号同順）

よって，停留点は　 (0, 0), (±1,±1)（複号同順）

判定
fxx(x, y) = 12x2, fyy(x, y) = 12y2, fxy(x, y) = −4

H(x, y) = 12x2 · 12y2 − (−4)2

・H(0, 0) = 0 · 0− (−4)2 = −16 < 0　　...　 f(0, 0)：極値でない

・H(±1,±1) = 12 · 12− (−4)2 = 128 > 0, fxx(±1,±1) = 12 > 0

　　　　　 ...　 f(±1,±1) = −2：極小値（複号同順）

(4) f(x, y) = 2x4 + y2 − 2xy

停留点{
fx(x, y) = 8x3 − 2y = 0　 · · · 1⃝
fy(x, y) = 2y − 2x = 0　 · · · 2⃝

2⃝ より　 y = x

1⃝ へ代入すると

　　 8x3 − 2x = 0

　　 2x(4x2 − 1) = 0　　...　 x = 0,± 1

2

x = 0 のとき， 2⃝ より　 y = 0

x = ± 1

2
のとき， 2⃝ より　 y = ± 1

2
（複号同順）

よって，停留点は　 (0, 0),

(
± 1

2
,± 1

2

)
（複号同順）

判定
fxx(x, y) = 24x2, fyy(x, y) = 2, fxy(x, y) = −2

H(x, y) = 24x2 · 2− (−2)2

・H(0, 0) = 0 · 2− (−2)2 = −4 < 0　　...　 f(0, 0)：極値でない

・H

(
± 1

2
,± 1

2

)
= 6 · 2− (−2)2 = 8 > 0, fxx

(
± 1

2
,± 1

2

)
= 6 > 0

　　　　　...　 f

(
± 1

2
,± 1

2

)
= − 1

8
：極小値（複号同順）
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(5) f(x, y) = x4 − 4xy + 2y2 + 4x− 4y

停留点{
fx(x, y) = 4x3 − 4y + 4 = 0　 · · · 1⃝
fy(x, y) = −4x+ 4y − 4 = 0　 · · · 2⃝

2⃝ より　 y = x+ 1

1⃝ へ代入すると

　　 4x3 − 4(x+ 1) + 4 = 0

　　 4x3 − 4x = 0

　　 4x(x2 − 1) = 0　　...　 x = 0,±1

x = 0 のとき， 2⃝ より　 y = 1

x = 1 のとき， 2⃝ より　 y = 2

x = −1 のとき， 2⃝ より　 y = 0

よって，停留点は　 (0, 1), (1, 2), (−1, 0)

判定
fxx(x, y) = 12x2, fyy(x, y) = 4, fxy(x, y) = −4

H(x, y) = 12x2 · 4− (−4)2

・H(0, 1) = 0 · 4− (−4)2 = −16 < 0　　...　 f(0, 1)：極値でない

・H(1, 2) = 12 · 4− (−4)2 = 32 > 0, fxx(1, 2) = 12 > 0　　...　 f(1, 2) = −3：極小値

・H(−1, 0) = 12 · 4− (−4)2 = 32 > 0, fxx(−1, 0) = 12 > 0　　...　 f(−1, 0) = −3：極小値

(6) f(x, y) = x3y − 3xy − y2

停留点{
fx(x, y) = 3x2y − 3y = 0　 · · · 1⃝
fy(x, y) = x3 − 3x− 2y = 0　 · · · 2⃝

2⃝ より　 y =
x3 − 3x

2

1⃝ へ代入すると

　　 3x2 · x3 − 3x

2
− 3 · x3 − 3x

2
= 0

　　 x2(x3 − 3x)− (x3 − 3x) = 0

　　 (x3 − 3x)(x2 − 1) = 0

　　 x(x2 − 3)(x2 − 1) = 0 ... x = 0,±
√
3 ,±1

x = 0 のとき， 2⃝ より　 y = 0

x = ±
√

3 のとき， 2⃝ より　 y = 0

x = ±1 のとき， 2⃝ より　 y = ∓1（複号同順）

よって，停留点は　 (0, 0), (±
√
3 , 0), (±1,∓1)（複号同順）
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判定
fxx(x, y) = 6xy, fyy(x, y) = −2, fxy(x, y) = 3x2 − 3

H(x, y) = 6xy · (−2)− (3x2 − 3)2

・H(0, 0) = 0 · (−2)− (−3)2 = −9 < 0　　...　 f(0, 0)：極値でない

・H(±
√

3 , 0) = 0 · (−2)− 62 = −36 < 0　　...　 f(±
√
3 , 0)：極値でない

・H(±1,∓1) = (−6) · (−2)− 02 = 12 > 0, fxx(±1,∓1) = −6 < 0

　　　　　 ...　 f(±1,∓1) = 1：極大値（複号同順）

(7) f(x, y) = 3xy2 + y3 − 6x2 − 24x

停留点{
fx(x, y) = 3y2 − 12x− 24 = 0　 · · · 1⃝
fy(x, y) = 6xy + 3y2 = 0　 · · · 2⃝

1⃝ より　 x =
y2 − 8

4

2⃝ へ代入すると

　　 6 · y2 − 8

4
· y + 3y2 = 0

　　 (y2 − 8)y + 2y2 = 0

　　 y(y2 + 2y − 8) = 0

　　 y(y − 2)(y + 4) = 0　　...　 y = 0, 2,−4

y = 0 のとき， 1⃝ より　 x = −2

y = 2 のとき， 1⃝ より　 x = −1

y = −4 のとき， 1⃝ より　 x = 2

よって，停留点は　 (−2, 0), (−1, 2), (2,−4)

判定
fxx(x, y) = −12, fyy(x, y) = 6x+ 6y, fxy(x, y) = 6y

H(x, y) = (−12) · (6x+ 6y)− (6y)2

・H(−2, 0) = (−12) · (−12)− 02 = 144 > 0, fxx(−2, 0) = −12 < 0

　　　　　 ...　 f(−2, 0) = 24：極大値

・H(−1, 2) = (−12) · 6− 122 = −216 < 0　　...　 f(−1, 2)：極値でない

・H(2,−4) = (−12) · (−12)− (−24)2 = −432 < 0　　...　 f(2,−4)：極値でない

(8) f(x, y) = x2 − 2xy2 − y + 2y3

停留点{
fx(x, y) = 2x− 2y2 = 0　 · · · 1⃝
fy(x, y) = −4xy − 1 + 6y2 = 0　 · · · 2⃝

1⃝ より　 x = y2
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2⃝ へ代入すると

　　−4y3 − 1 + 6y2 = 0

　　 4y3 − 6y2 + 1 = 0

　　 (2y − 1)(2y2 − 2y − 1) = 0　　...　 y =
1

2
,
1±

√
3

2

y =
1

2
のとき， 1⃝ より　 x =

1

4

y =
1±

√
3

2
のとき， 1⃝ より　 x =

2±
√

3

2
（複号同順）

よって，停留点は　
(

1

4
,
1

2

)
,

(
2±

√
3

2
,
1±

√
3

2

)
（複号同順）

判定
fxx(x, y) = 2, fyy(x, y) = −4x+ 12y, fxy(x, y) = −4y

H(x, y) = 2 · (−4x+ 12y)− (−4y)2

・H

(
1

4
,
1

2

)
= 2 · 5− (−2)2 = 6 > 0, fxx

(
1

4
,
1

2

)
= 2 > 0

　　　　　 ...　 f

(
1

4
,
1

2

)
= − 5

16
：極小値

・H

(
2±

√
3

2
,
1±

√
3

2

)
= 2 · (2± 4

√
3 )− (−2∓ 2

√
3 )2 = −12 < 0

　　　　　 ... f

(
2±

√
3

2
,
1±

√
3

2

)
：極値でない（複号同順）

(9) f(x, y) = x2 − x2y + 2y2 − y3

停留点{
fx(x, y) = 2x− 2xy = 0　 · · · 1⃝
fy(x, y) = −x2 + 4y − 3y2 = 0　 · · · 2⃝

1⃝ より　 2x(1− y) = 0　　...　 x = 0　または　 y = 1

x = 0 のとき， 2⃝ より

　　 4y − 3y2 = 0

　　 y(4− 3y) = 0　　...　 y = 0,
4

3

y = 1 のとき， 2⃝ より

　　−x2 + 1 = 0

　　 x2 = 1　　...　 x = ±1

よって，停留点は　 (0, 0),

(
0,

4

3

)
, (±1, 1)

判定
fxx(x, y) = 2− 2y, fyy(x, y) = 4− 6y, fxy(x, y) = −2x
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H(x, y) = (2− 2y)(4− 6y)− (−2x)2

・H(0, 0) = 2 · 4− 02 = 8 > 0, fxx(0, 0) = 2 > 0　　...　 f(0, 0) = 0：極小値

・H

(
0,

4

3

)
=

(
− 2

3

)
· (−4)− 02 =

8

3
> 0, fxx

(
0,

4

3

)
= − 2

3
< 0

　　　　　 ...　 f

(
0,

4

3

)
=

32

27
：極大値

・H(±1, 1) = 0 · (−2)− (∓2)2 = −4 < 0　　...　 f(±1, 1)：極値でない

(10) f(x, y) = xy − x2y − 2xy2

停留点{
fx(x, y) = y − 2xy − 2y2 = 0　 · · · 1⃝
fy(x, y) = x− x2 − 4xy = 0　 · · · 2⃝

2⃝ より　 x(1− x− 4y) = 0　　...　 x = 0　または　 x = 1− 4y

x = 0 のとき， 1⃝ より

　　 y − 2y2 = 0

　　 y(1− 2y) = 0　　...　 y = 0,
1

2

x = 1− 4y　 · · · 3⃝ のとき， 1⃝ より

　　 y(1− 2x− 2y) = 0

　　 y{1− 2(1− 4y)− 2y} = 0

　　 y(6y − 1) = 0　　...　 y = 0,
1

6

y = 0 のとき， 3⃝ より　 x = 1

y =
1

6
のとき， 3⃝ より　 x =

1

3

よって，停留点は　 (0, 0),

(
0,

1

2

)
, (1, 0),

(
1

3
,
1

6

)
判定
fxx(x, y) = −2y, fyy(x, y) = −4x, fxy(x, y) = 1− 2x− 4y

H(x, y) = (−2y) · (−4x)− (1− 2x− 4y)2

・H(0, 0) = 0 · 0− 12 = −1 < 0　　...　 f(0, 0)：極値でない

・H

(
0,

1

2

)
= (−1) · 0− (−1)2 = −1 < 0　　...　 f

(
0,

1

2

)
：極値でない

・H(1, 0) = 0 · (−4)− (−1)2 = −1 < 0　　...　 f(1, 0)：極値でない

・H

(
1

3
,
1

6

)
=

(
− 1

3

)
·
(
− 4

3

)
−
(
− 1

3

)2

=
1

3
> 0, fxx

(
1

3
,
1

6

)
= − 1

3
< 0

　　　　　 ...　 f

(
1

3
,
1

6

)
=

1

54
：極大値
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(11) f(x, y) = xy − x2y − xy3

停留点{
fx(x, y) = y − 2xy − y3 = 0　 · · · 1⃝
fy(x, y) = x− x2 − 3xy2 = 0　 · · · 2⃝

2⃝ より　 x(1− x− 3y2) = 0　　...　 x = 0　または　 x = 1− 3y2

x = 0 のとき， 1⃝ より

　　 y − y3 = 0

　　 y(1− y2) = 0　　...　 y = 0,±1

x = 1− 3y2　 · · · 3⃝ のとき， 1⃝ より

　　 y(1− 2x− y2) = 0

　　 y{1− 2(1− 3y2)− y2} = 0

　　 y(5y2 − 1) = 0　　...　 y = 0,± 1√
5

y = 0 のとき， 3⃝ より　 x = 1

y = ± 1√
5
のとき， 3⃝ より　 x =

2

5

よって，停留点は　 (0, 0), (0,±1), (1, 0),

(
2

5
,± 1√

5

)
判定
fxx(x, y) = −2y, fyy(x, y) = −6xy, fxy(x, y) = 1− 2x− 3y2

H(x, y) = (−2y) · (−6xy)− (1− 2x− 3y2)2

・H(0, 0) = 0 · 0− 12 = −1 < 0　　...　 f(0, 0)：極値でない

・H(0,±1) = (∓2) · 0− (−2)2 = −4 < 0　　...　 f(0,±1)：極値でない

・H(1, 0) = 0 · 0− (−1)2 = −1 < 0　　...　 f(1, 0)：極値でない

・H

(
2

5
,± 1√

5

)
=

(
∓ 2√

5

)
·
(
∓ 12

5
√

5

)
−
(
− 2

5

)2

=
4

5
> 0

　 fxx

(
2

5
,

1√
5

)
= − 2√

5
< 0　　...　 f

(
2

5
,

1√
5

)
=

4

25
√

5
：極大値

　 fxx

(
2

5
,− 1√

5

)
=

2√
5

> 0　　...　 f

(
2

5
,− 1√

5

)
= − 4

25
√
5
：極小値

(12) f(x, y) = x3y + xy3 − xy

停留点{
fx(x, y) = 3x2y + y3 − y = 0　 · · · 1⃝
fy(x, y) = x3 + 3xy2 − x = 0　 · · · 2⃝

1⃝ より　 y(3x2 + y2 − 1) = 0　　...　 y = 0　または　 y2 = 1− 3x2

y = 0 のとき， 2⃝ より

　　 x3 − x = 0
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　　 x(x2 − 1) = 0　　...　 x = 0,±1

y2 = 1− 3x2　 · · · 3⃝ のとき， 2⃝ より

　　 x(x2 + 3y2 − 1) = 0

　　 x{x2 + 3(1− 3x2)− 1} = 0

　　 x(2− 8x2) = 0　　...　 x = 0,± 1

2

x = 0 のとき， 3⃝ より　 y2 = 1　　...　 y = ±1

x = ± 1

2
のとき， 3⃝ より　 y2 =

1

4
　　...　 y = ± 1

2
（複号任意）

よって，停留点は　 (0, 0), (±1, 0), (0,±1),

(
± 1

2
,± 1

2

)
（複号任意）

判定
fxx(x, y) = 6xy, fyy(x, y) = 6xy, fxy(x, y) = 3x2 + 3y2 − 1

H(x, y) = 6xy · 6xy − (3x2 + 3y2 − 1)2

・H(0, 0) = 0 · 0− (−1)2 = −1 < 0　　...　 f(0, 0)：極値でない

・H(±1, 0) = H(0,±1) = 0 · 0− 22 = −4 < 0　　...　 f(±1, 0), f(0,±1)：極値でない

・H

(
± 1

2
,± 1

2

)
=

3

2
· 3

2
−
(

1

2

)2

= 2 > 0, fxx

(
± 1

2
,± 1

2

)
=

3

2
> 0

　　　　　 ...　 f

(
± 1

2
,± 1

2

)
= − 1

8
：極小値（複号同順）

・H

(
± 1

2
,∓ 1

2

)
=

(
− 3

2

)
·
(
− 3

2

)
−
(

1

2

)2

= 2 > 0, fxx

(
± 1

2
,∓ 1

2

)
= − 3

2
< 0

　　　　　 ...　 f

(
± 1

2
,∓ 1

2

)
=

1

8
：極大値（複号同順）

(13) f(x, y) = x3 + y3 − 2x2 − 2y2 + xy

停留点{
fx(x, y) = 3x2 − 4x+ y = 0　 · · · 1⃝
fy(x, y) = 3y2 − 4y + x = 0　 · · · 2⃝

1⃝− 2⃝ より

　　 3(x− y)(x+ y)− 5(x− y) = 0

　　 (x− y){3(x+ y)− 5} = 0　　...　 y = x　または　 x+ y =
5

3

(i) y = x のとき， 1⃝ より

　　 3x2 − 3x = 0

　　 x(x− 1) = 0　　...　 x = 0, 1

(ii) x+ y =
5

3
のとき， 1⃝+ 2⃝ より

　　 3{(x+ y)2 − 2xy} − 3(x+ y) = 0
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　　 3

(
25

9
− 2xy

)
− 5 = 0　　...　 xy =

5

9

これより，x, y は t2 − 5

3
t+

5

9
= 0 すなわち 9t2 − 15t+5 = 0 の解となる（解と係数の関係）．

実際に解くと t =
5±

√
5

6
となるから，簡単のため

　　 α =
5−

√
5

6
, β =

5 +
√

5

6

とおく．このとき，α + β =
5

3
, αβ =

5

9
となることに注意する．

以上 (i),(ii) より，停留点は　 (0, 0), (1, 1), (α, β), (β, α)

※ 1⃝ より y = −3x2 + 4x として，これを 2⃝ へ代入しても停留点を求めることはできる．

判定
fxx(x, y) = 6x− 4, fyy(x, y) = 6y − 4, fxy(x, y) = 1

H(x, y) = (6x− 4)(6y − 4)− 12 = 36xy − 24(x+ y) + 15

・H(0, 0) = (−4) · (−4)− 12 = 15 > 0, fxx(0, 0) = −4 < 0　　...　 f(0, 0) = 0：極大値

・H(1, 1) = 2 · 2− 12 = 3 > 0, fxx(1, 1) = 2 > 0　　...　 f(1, 1) = −1：極小値

・H(α, β) = H(β, α) = 36αβ − 24(α + β) + 15 = 20− 40 + 15 = −5 < 0

　　　　　 ...　 f(α, β), f(β, α)：極値でない
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§4. 2 変数関数の積分

★重積分，累次積分
立体図形を直方体で近似するという考え方により，重積分

　　
∫ ∫

D

f(x, y)dxdy

の定義をしたが，計算するためには累次積分

　　
∫ b

a

{∫ g2(x)

g1(x)

f(x, y)dy

}
dx

に直さなければならない（重積分の累次積分への直し方は後で扱う）．まずは累次積分の計算
をしてみよう．累次積分とは，順番に積分するということである．

【例題】
次の累次積分を求めよ．

(1)

∫ 1

0

(∫ 1

1−x

x3ydy

)
dx (2)

∫ 2

1

(∫ x

1
x

xydy

)
dx

解答

(1)

∫ 1

0

(∫ 1

1−x

x3ydy

)
dx =

∫ 1

0

[
x3

2
y2
]y=1

y=1−x

dx

=

∫ 1

0

x3

2
{1− (1− x)2}dx

=

∫ 1

0

x3

2
(2x− x2)dx

=

∫ 1

0

(
x4 − x5

2

)
dx

=

[
x5

5
− x6

12

]1
0

=
1

5
− 1

12

=
7

60

※
∫ 1

1−x

x3y dy
:::
において， dy

:::
は x3y を y で積分することを表しているから，x3y を y で積分

した
x3

2
y2 に y = 1, 1− x を代入して引き算している．

※内側の積分を抜き出して

　　
∫ 1

1−x

x3ydy =

[
x3

2
y2
]y=1

y=1−x

= · · · = x4 − x5

2

と計算してから，これを与式へ戻して
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∫ 1

0

(∫ 1

1−x

x3ydy

)
dx =

∫ 1

0

(
x4 − x5

2

)
dx = · · · = 7

60

というように計算してもよい．

(2)

∫ 2

1

(∫ x

1
x

xydy

)
dx =

∫ 2

1

[ x
2
y2
]y=x

y= 1
x

dx

=

∫ 2

1

x

2

(
x2 − 1

x2

)
dx

=

∫ 2

1

(
x3

2
− 1

2x

)
dx

=

[
x4

8
− 1

2
log x

]2
1

=
1

8
(16− 1)− 1

2
(log 2− 0)

=
15

8
− 1

2
log 2

【問題 4.1】 　
次の累次積分を求めよ．

(1)

∫ 1

0

(∫ 1−x

0

x3ydy

)
dx (2)

∫ 1

0

(∫ 2

x

x2ydy

)
dx

(3)

∫ 2

−1

(∫ x+1

x

y2dy

)
dx (4)

∫ 3

−1

(∫ 2x+3

x2

xydy

)
dx

(5)

∫ 1

0

(∫ 2x+1

0

xdy

)
dx (6)

∫ 2

1

(∫ 4−x

0

xdy

)
dx

(7)

∫ 1

0

{∫ 1−x

0

(2x+ 3y2)dy

}
dx (8)

∫ 1

0

{∫ x+1

x2+1

(x2 + 2y)dy

}
dx

(9)

∫ 1
2

0

{∫ 1−2x

0

(x2 + 2y2)dy

}
dx (10)

∫ 6

3

(∫ x2

1

x

y2
dy

)
dx

(11)

∫ 2

1

(∫ e2

ex

1

xy
dy

)
dx (12)

∫ 3

1

{∫ x

1

1

(x+ y)2
dy

}
dx

(13)

∫ 1

0

{∫ x2

0

x2 + 1

(y + 1)3
dy

}
dx (14)

∫ 4
3

0

(∫ 2−x

x
2

√
2y − x dy

)
dx

(15)

∫ 5

1

(∫ x

1

log
y

x
dy

)
dx (16)

∫ 5

3

(∫ x

2

x

y
dy

)
dx
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(17)

∫ 1

1
2

(∫ 2

1
x

x2exydy

)
dx (18)

∫ √
3

1

(∫ x2

x

x

x2 + y2
dy

)
dx

解答

(1)

∫ 1

0

(∫ 1−x

0

x3ydy

)
dx =

∫ 1

0

[
x3

2
y2
]y=1−x

y=0

dx

=

∫ 1

0

x3

2
(1− x)2dx

=

∫ 1

0

(
x3

2
− x4 +

x5

2

)
dx

=

[
x4

8
− x5

5
+

x6

12

]1
0

=
1

8
− 1

5
+

1

12

=
1

120

(2)

∫ 1

0

(∫ 2

x

x2ydy

)
dx =

∫ 1

0

[
x2

2
y2
]y=2

y=x

dx

=

∫ 1

0

x2

2
(4− x2)dx

=

∫ 1

0

(
2x2 − x4

2

)
dx

=

[
2

3
x3 − x5

10

]1
0

=
2

3
− 1

10

=
17

30

(3)

∫ 2

−1

(∫ x+1

x

y2dy

)
dx =

∫ 2

−1

[
y3

3

]y=x+1

y=x

dx

=

∫ 2

−1

1

3

{
(x+ 1)3 − x3

}
dx

=
1

3

[
1

4
(x+ 1)4 − x4

4

]2
−1

=
1

3

{
1

4
(81− 0)− 1

4
(16− 1)

}
=

11

2
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(4)

∫ 3

−1

(∫ 2x+3

x2

xydy

)
dx =

∫ 3

−1

[ x
2
y2
]y=2x+3

y=x2
dx

=

∫ 3

−1

x

2

{
(2x+ 3)2 − x4

}
dx

=

∫ 3

−1

(
− x5

2
+ 2x3 + 6x2 +

9

2
x

)
dx

=

[
− x6

12
+

x4

2
+ 2x3 +

9

4
x2

]3
−1

= − 1

12
(729− 1) +

1

2
(81− 1) + 2{27− (−1)}+ 9

4
(9− 1)

=
160

3

(5)

∫ 1

0

(∫ 2x+1

0

xdy

)
dx =

∫ 1

0

[
xy
]y=2x+1

y=0
dx

=

∫ 1

0

x(2x+ 1)dx

=

∫ 1

0

(2x2 + x)dx

=

[
2

3
x3 +

x2

2

]1
0

=
2

3
+

1

2

=
7

6

(6)

∫ 2

1

(∫ 4−x

0

xdy

)
dx =

∫ 2

1

[
xy
]y=4−x

y=0
dx

=

∫ 2

1

x(4− x)dx

=

∫ 2

1

(4x− x2)dx

=

[
2x2 − x3

3

]2
1

= 2(4− 1)− 1

3
(8− 1)

=
11

3
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(7)

∫ 1

0

{∫ 1−x

0

(2x+ 3y2)dy

}
dx =

∫ 1

0

[
2xy + y3

]y=1−x

y=0
dx

=

∫ 1

0

{
2x(1− x) + (1− x)3

}
dx

=

∫ 1

0

{
2x− 2x2 + (1− x)3

}
dx

=

[
x2 − 2

3
x3 − 1

4
(1− x)4

]1
0

= 1− 2

3
− 1

4
(0− 1)

=
7

12

(8)

∫ 1

0

{∫ x+1

x2+1

(x2 + 2y)dy

}
dx =

∫ 1

0

[
x2y + y2

]y=x+1

y=x2+1
dx

=

∫ 1

0

[
x2
{
(x+ 1)− (x2 + 1)

}
+
{
(x+ 1)2 − (x2 + 1)2

}]
dx

=

∫ 1

0

(−2x4 + x3 − x2 + 2x)dx

=

[
− 2

5
x5 +

x4

4
− x3

3
+ x2

]1
0

= − 2

5
+

1

4
− 1

3
+ 1

=
31

60

(9)

∫ 1
2

0

{∫ 1−2x

0

(x2 + 2y2)dy

}
dx =

∫ 1
2

0

[
x2y +

2

3
y3
]y=1−2x

y=0

dx

=

∫ 1
2

0

{
x2(1− 2x) +

2

3
(1− 2x)3

}
dx

=

∫ 1
2

0

{
x2 − 2x3 +

2

3
(1− 2x)3

}
dx

=

[
x3

3
− x4

2
+

2

3
·
{

1

−2
· 1

4
(1− 2x)4

}] 1
2

0

=
1

24
− 1

32
− 1

12
(0− 1)

=
3

32
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(10)

∫ 6

3

(∫ x2

1

x

y2
dy

)
dx =

∫ 6

3

[
− x

y

]y=x2

y=1

dx

=

∫ 6

3

−x

(
1

x2
− 1

)
dx

=

∫ 6

3

(
− 1

x
+ x

)
dx

=

[
− log |x|+ x2

2

]6
3

= −(log 6− log 3) +
1

2
(36− 9)

= − log 2 +
27

2

(11)

∫ 2

1

(∫ e2

ex

1

xy
dy

)
dx =

∫ 2

1

[
log y

x

]y=e2

y=ex
dx

=

∫ 2

1

1

x
(2− x)dx

=

∫ 2

1

(
2

x
− 1

)
dx

=
[
2 log x− x

]2
1

= 2(log 2− 0)− (2− 1)

= 2 log 2− 1

(12)

∫ 3

1

{∫ x

1

1

(x+ y)2
dy

}
dx =

∫ 3

1

[
− 1

x+ y

]y=x

y=1

dx

=

∫ 3

1

−
(

1

2x
− 1

x+ 1

)
dx

=

[
− 1

2
log x+ log(x+ 1)

]3
1

= − 1

2
(log 3− 0) + (log 4− log 2)

= − 1

2
log 3 + log 2
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(13)

∫ 1

0

{∫ x2

0

x2 + 1

(y + 1)3
dy

}
dx =

∫ 1

0

[
− x2 + 1

2(y + 1)2

]y=x2

y=0

dx

=

∫ 1

0

− x2 + 1

2

{
1

(x2 + 1)2
− 1

}
dx

=

∫ 1

0

1

2

(
x2 + 1− 1

1 + x2

)
dx

=
1

2

[
x3

3
+ x− arctanx

]1
0

=
1

2

{
1

3
+ 1−

( π

4
− 0
)}

=
2

3
− π

8

(14)

∫ 4
3

0

(∫ 2−x

x
2

√
2y − x dy

)
dx =

∫ 4
3

0

{∫ 2−x

x
2

(2y − x)
1
2 dy

}
dx

=

∫ 4
3

0

[
1

2
· 2

3
(2y − x)

3
2

]y=2−x

y= x
2

dx

=

∫ 4
3

0

1

3

{
(4− 3x)

3
2 − 0

}
dx

=
1

3

∫ 4
3

0

(4− 3x)
3
2 dx

=
1

3

[
1

−3
· 2

5
(4− 3x)

5
2

] 4
3

0

= − 2

45
(0− 32)

=
64

45
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(15)

∫ 5

1

(∫ x

1

log
y

x
dy

)
dx =

∫ 5

1

{∫ x

1

(log y − log x)dy

}
dx

=

∫ 5

1

[
(y log y − y)− y log x

]y=x

y=1
dx

=

∫ 5

1

{
(x log x− 1 · 0)− (x− 1)− (x− 1) log x

}
dx

=

∫ 5

1

{
log x− (x− 1)

}
dx

=

[
(x log x− x)− 1

2
(x− 1)2

]5
1

= (5 log 5− 1 · 0)− (5− 1)− 1

2
(16− 0)

= 5 log 5− 12

(16)

∫ 5

3

(∫ x

2

x

y
dy

)
dx =

∫ 5

3

[
x log y

]y=x

y=2
dx

=

∫ 5

3

x(log x− log 2)dx

=

∫ 5

3

(x log x− x log 2)dx

=

([
x2

2
log x

]5
3

− 1

2

∫ 5

3

xdx

)
−
[
x2

2
log 2

]5
3

=
1

2
(25 log 5− 9 log 3)− 1

2

[
x2

2

]5
3

− 1

2
(25− 9) log 2

=
25

2
log 5− 9

2
log 3− 1

4
(25− 9)− 8 log 2

=
25

2
log 5− 9

2
log 3− 8 log 2− 4

log x
x2

2
1

x
x

�
�

�	

@
@
@R
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(17)

∫ 1

1
2

(∫ 2

1
x

x2exydy

)
dx =

∫ 1

1
2

[
xexy

]y=2

y= 1
x

dx

=

∫ 1

1
2

x(e2x − e)dx

=

∫ 1

1
2

(xe2x − ex)dx

=

([ x
2
e2x
]1

1
2

− 1

2

∫ 1

1
2

e2xdx

)
−
[ e
2
x2
]1

1
2

=
1

2

(
1 · e2 − 1

2
· e
)
− 1

2

[
1

2
e2x
]1

1
2

− e

2

(
1− 1

4

)
=

e2

2
− e

4
− 1

4
(e2 − e)− 3e

8

=
e2

4
− 3e

8

x
1

2
e2x

1 e2x

�
�

�	

@
@
@R

　　

(18)

∫ √
3

1

(∫ x2

x

x

x2 + y2
dy

)
dx

=

∫ √
3

1

[
arctan

y

x

]y=x2

y=x
dx

=

∫ √
3

1

(
arctanx− π

4

)
dx

=

([
x arctanx

]√ 3

1
−
∫ √

3

1

x

1 + x2
dx

)
− π

4

[
x
]√ 3

1

=
(√

3 · π

3
− 1 · π

4

)
− 1

2

∫ √
3

1

2x

1 + x2
dx− π

4
(
√
3 − 1)

=

√
3

12
π − 1

2

[
log(1 + x2)

]√ 3

1

=

√
3

12
π − 1

2
(log 4− log 2)

=

√
3

12
π − 1

2
log 2

arctanx x

1

1 + x2
1

�
�

�	

@
@
@R
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★重積分の累次積分への変更
(1) g1, g2：[a, b] で連続，a <= x <= b で g1(x) <= g2(x)

D：a <= x <= b, g1(x) <= y <= g2(x)　（縦線型領域）
f：D で連続

=⇒
∫ ∫

D

f(x, y)dxdy =

∫ b

a

{∫ g2(x)

g1(x)

f(x, y)dy

}
dx

(2) h1, h2：[c, d] で連続，c <= y <= d で h1(y) <= h2(y)

D：c <= y <= d, h1(y) <= x <= h2(y)　（横線型領域）
f：D で連続

=⇒
∫ ∫

D

f(x, y)dxdy =

∫ d

c

{∫ h2(y)

h1(y)

f(x, y)dx

}
dy

★積分の順序変更
上の (1),(2) において∫ b

a

{∫ g2(x)

g1(x)

f(x, y)dy

}
dx =

∫ d

c

{∫ h2(y)

h1(y)

f(x, y)dx

}
dy

☆積分の順序変更は次のようにする．
(1) 累次積分から積分領域の式を復元する．
(2) 積分領域を図示する．
(3) 積分領域の「型」を見直して，式も書き直す．
(4) 書き直した積分領域の式から累次積分に戻す．

【例題】
次の積分順序を変更せよ．∫ 2

1

{∫ 1

x−1

f(x, y)dy

}
dx

解答
上で述べた順序変更のやり方 (1) ～ (4) の順に従う．
(1) 累次積分の形から，積分領域は

　　D : 1 <= x <= 2, x− 1 <= y <= 1　（縦線型領域）

である．

(2) x の範囲は 1 から 2 で，2 直線 y = x− 1 と y = 1 の間だから，積分領域 D は図の斜線部
となる．
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(3) 斜線部より，y の範囲が 0 から 1 であること
が読み取れる．y をこの範囲から適当にとり，そ
こから斜線部に横線を引いたものが図の太線であ
る．この太線における x の範囲を求めよう．左端
は 1 である．右端は直線 y = x− 1 上にあり，こ
の式は x = y+1と書き直すことができるから，右
端は y + 1 である．よって，積分領域は

　　D : 0 <= y <= 1, 1 <= x <= y+1 （横線型領域）

ともかける．

O x

y

1 2

1
D

y
1 y+1

y=x−1
(x=y+1)

(4) (3) の積分領域から累次積分に戻せば，積分の順序変更が完成する．∫ 2

1

{∫ 1

x−1

f(x, y)dy

}
dx =

∫ 1

0

{∫ y+1

1

f(x, y)dx

}
dy

【問題 4.2】 　
次の積分順序を変更せよ．ただし，1 つの累次積分で表せるとは限らず，複数の累次積分で表
さなければならないときもある．

(1)

∫ 1

−1

{∫ 1−x

0

f(x, y)dy

}
dx (2)

∫ 3

1

{∫ 2x−1

1

f(x, y)dy

}
dx

(3)

∫ 1

0

{∫ x+1

1−x

f(x, y)dy

}
dx (4)

∫ 1

0

{∫ x

x2−1

f(x, y)dy

}
dx

解答

(1)

∫ 1

−1

{∫ 1−x

0

f(x, y)dy

}
dx

積分領域は

　　D : −1 <= x <= 1, 0 <= y <= 1− x

であるが，これは

　　D : 0 <= y <= 2, −1 <= x <= 1− y

でもあるから∫ 1

−1

{∫ 1−x

0

f(x, y)dy

}
dx =

∫ 2

0

{∫ 1−y

−1

f(x, y)dx

}
dy

O x

y

−1 1

2

y
−1 1−y

y=1−x
(x=1−y)

D
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(2)

∫ 3

1

{∫ 2x−1

1

f(x, y)dy

}
dx

積分領域は

　　D : 1 <= x <= 3, 1 <= y <= 2x− 1

であるが，これは

　　D : 1 <= y <= 5,
y + 1

2
<= x <= 3

でもあるから∫ 3

1

{∫ 2x−1

1

f(x, y)dy

}
dx =

∫ 5

1

{∫ 3

y+1
2

f(x, y)dx

}
dy

O x

y

1

5

1 3

D

y
y+1
2 3

y=2x−1
(x= y+1

2 )

(3)

∫ 1

0

{∫ x+1

1−x

f(x, y)dy

}
dx

積分領域は

　　D : 0 <= x <= 1, 1− x <= y <= x+ 1

であるが，これは

　　D1 : 0 <= y <= 1, 1− y <= x <= 1

　　D2 : 1 <= y <= 2, y − 1 <= x <= 1

をあわせたものでもあるから

ここで分割する

O x1

1

2

y

y

y

1−y

y−1 1

1

D

y=x+1 (x=y−1)

y=1−x (x=1−y)

∫ 1

0

{∫ x+1

1−x

f(x, y)dy

}
dx =

∫ 1

0

{∫ 1

1−y

f(x, y)dx

}
dy +

∫ 2

1

{∫ 1

y−1

f(x, y)dx

}
dy

(4)

∫ 1

0

{∫ x

x2−1

f(x, y)dy

}
dx

積分領域は

　　D : 0 <= x <= 1, x2 − 1 <= y <= x

であるが，これは

　　D1 : −1 <= y <= 0, 0 <= x <=
√

y + 1

　　D2 : 0 <= y <= 1, y <= x <= 1

をあわせたものでもあるから

ここで分割する
O x

1

y

y

y y 1

1

D

y=x (x=y)

y=x2−1 (x=
√

y+1 )

−1
0

√
y+1

∫ 1

0

{∫ x

x2−1

f(x, y)dy

}
dx =

∫ 0

−1

{∫ √
y+1

0

f(x, y)dx

}
dy +

∫ 1

0

{∫ 1

y

f(x, y)dx

}
dy
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【問題 4.3】 　
積分の順序変更により，次の積分を求めよ．∫ 4

0

{∫ 2

√
x

(y3 + 1)−
5
2 dy

}
dx

解答
積分領域は

　　D : 0 <= x <= 4,
√

x <= y <= 2

であるが，これは

　　D : 0 <= y <= 2, 0 <= x <= y2

でもあるから O x

y

4

2
D

y
y2

y=
√
x

(x=y2)

0

∫ 4

0

{∫ 2

√
x

(y3 + 1)−
5
2 dy

}
dx =

∫ 2

0

{∫ y2

0

(y3 + 1)−
5
2 dx

}
dy

=

∫ 2

0

[
x(y3 + 1)−

5
2

]x=y2

x=0
dy

=

∫ 2

0

y2(y3 + 1)−
5
2 dy

=
1

3

∫ 2

0

(y3 + 1)−
5
2 · 3y2dy

=
1

3

[
− 2

3
(y3 + 1)−

3
2

]2
0

= − 2

9

(
1

27
− 1

)
=

52

243

★変数変換の公式
極座標変換

　　

{
x = r cos θ

y = r sin θ

(
r >= 0

θ：1 周分

)
により，(r, θ) 領域 D′ が (x, y) 領域 D へうつされるとき，D で連続な関数 f に対して

　　
∫ ∫

D

f(x, y)dxdy =

∫ ∫
D′

f(r cos θ, r sin θ) · rdrdθ

が成り立つ．
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☆ (x, y) 領域 D に対して，(r, θ) 領域 D′ は次のように求める．

1⃝：D を図示する．

2⃝：D 内に点 (x, y) をとる．

3⃝：原点と 2⃝ の点を結び，さらに境界まで伸ばす．

4⃝： 3⃝ の線分が原点のまわりで動ける範囲をかく．

5⃝： 4⃝ から θ の範囲を求める．

6⃝： 3⃝ から r の範囲を求める．

※D の図示が困難なときでも，x = r cos θ, y = r sin θ（r >= 0, θ：1 周分）を D の式に代入
して，r, θ の連立不等式を解けば D′ を求めることができる．

【例題】
(1) D : x2 + y2 <= 1, y >= 0

は図の斜線部である． 4⃝, 3⃝ から範囲を求めれば

　　D′ : 0 <= θ <= π, 0 <= r <= 1

であることがわかる．

O x

y

1

1

1⃝
2⃝

4⃝
3⃝

D

−1

(2) D : x2 + y2 <= 2x

は図の斜線部である．OA = 2 cos θ であることに
注意して 4⃝, 3⃝ から範囲を求めれば

　　D′ : − π

2
<= θ <=

π

2
, 0 <= r <= 2 cos θ

であることがわかる．
O x

y

1 2

1⃝

4⃝

3⃝ 2⃝
θ

A

D

【公式】

∫ π
2

0

cosn xdx =

∫ π
2

0

sinn xdx =



π

2
(n = 0)

1 (n = 1)

(n− 1) · (n− 3) · · · · · 1
n · (n− 2) · · · · · 2

· π

2
(n = 2, 4, 6, . . . )

(n− 1) · (n− 3) · · · · · 2
n · (n− 2) · · · · · 3

· 1 (n = 3, 5, 7, . . . )

証明∫ π
2

0

sinn xdx において，x =
π

2
− t とおくと
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dx

dt
= −1,

x 0 → π
2

t π
2

→ 0

であるから∫ π
2

0

sinn xdx =

∫ 0

π
2

sinn
( π

2
− t
)
· (−dt) =

∫ π
2

0

sinn
( π

2
− t
)
dt =

∫ π
2

0

cosn tdt

よって，
∫ π

2

0

cosn xdx について示せばよい．

In =

∫ π
2

0

cosn xdx とおくと

I0 =

∫ π
2

0

dx =
[
x
] π

2

0
=

π

2

I1 =

∫ π
2

0

cos xdx =
[
sin x

] π
2

0
= 1− 0 = 1

である．また，n >= 2 のとき

In =

∫ π
2

0

cosn xdx

=

∫ π
2

0

cosn−1 x cos xdx

=
[
cosn−1 x sinx

] π
2

0
+ (n− 1)

∫ π
2

0

cosn−2 x sin2 xdx

= (0 · 1− 1 · 0) + (n− 1)

∫ π
2

0

cosn−2 x(1− cos2 x)dx

= (n− 1)

(∫ π
2

0

cosn−2 xdx−
∫ π

2

0

cosn xdx

)
= (n− 1)In−2 − (n− 1)In

cosn−1 x sin x

(n− 1) cosn−2 x · (− sin x) cos x

�
�

�	

@
@
@R

　　

であるから，漸化式

　　 In =
n− 1

n
In−2 (n >= 2)

が得られる．よって，n = 2, 4, 6, . . . のとき

In =
n− 1

n
In−2

=
n− 1

n
· n− 3

n− 2
In−4

...

=
n− 1

n
· n− 3

n− 2
· · · · · 1

2
I0

=
(n− 1) · (n− 3) · · · · · 1

n · (n− 2) · · · · · 2
· π

2
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また，n = 3, 5, 7, . . . のとき

In =
n− 1

n
In−2

=
n− 1

n
· n− 3

n− 2
In−4

...

=
n− 1

n
· n− 3

n− 2
· · · · · 2

3
I1

=
(n− 1) · (n− 3) · · · · · 2

n · (n− 2) · · · · · 3
· 1

【問題 4.4】 　
極座標変換により，次の重積分を求めよ．

(1)

∫ ∫
D

1√
x2 + y2 + 8

dxdy (D : x2 + y2 <= 1, y >= 0)

(2)

∫ ∫
D

log(x2 + y2)dxdy (D : 1 <= x2 + y2 <= 4, x >= 0, y >= 0)

(3)

∫ ∫
D

y2dxdy (D : x2 + y2 <= 2x)

(4)

∫ ∫
D

(x2 + y2)
3
2 dxdy (D : x2 + y2 <= 2x, y >= 0)

(5)

∫ ∫
D

x2dxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)

(6)

∫ ∫
D

√
1− x2 − y2 dxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)

(7)

∫ ∫
D

√
x2 + y2 dxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)

(8)

∫ ∫
D

ydxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)
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解答

(1)

∫ ∫
D

1√
x2 + y2 + 8

dxdy (D : x2 + y2 <= 1, y >= 0)

=

∫ ∫
D′

1√
r2 + 8

· rdrdθ (D′ : 0 <= θ <= π, 0 <= r <= 1)

=

∫ ∫
D′

r√
r2 + 8

drdθ

=

∫ π

0

(∫ 1

0

r√
r2 + 8

dr

)
dθ

=

∫ π

0

{
1

2

∫ 1

0

(r2 + 8)−
1
2 · 2rdr

}
dθ

=

∫ π

0

1

2

[
2(r2 + 8)

1
2

]r=1

r=0
dθ

=

∫ π

0

(
3− 2

√
2
)
dθ

=
(
3− 2

√
2
)[
θ
]π
0

=
(
3− 2

√
2
)
π

(2)

∫ ∫
D

log(x2 + y2)dxdy (D : 1 <= x2 + y2 <= 4, x >= 0, y >= 0)

=

∫ ∫
D′

log r2 · rdrdθ
(
D′ : 0 <= θ <=

π

2
, 1 <= r <= 2

)
=

∫ ∫
D′

2r log rdrdθ

=

∫ π
2

0

(∫ 2

1

2r log rdr

)
dθ

=

∫ π
2

0

([
r2 log r

]r=2

r=1
−
∫ 2

1

rdr

)
dθ

=

∫ π
2

0

{
(4 log 2− 1 · 0)−

[ r2
2

]r=2

r=1

}
dθ

=

∫ π
2

0

{
4 log 2− 1

2
(4− 1)

}
dθ

=

(
4 log 2− 3

2

)[
θ
] π

2

0

=

(
4 log 2− 3

2

)
· π

2

=

(
2 log 2− 3

4

)
π

O 1 2 x

1

2

y

D

log r r2

1

r
2r

�
�

�	

@
@
@R
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(3)

∫ ∫
D

y2dxdy (D : x2 + y2 <= 2x)

=

∫ ∫
D′

r2 sin2 θ · rdrdθ
(
D′ : − π

2
<= θ <=

π

2
, 0 <= r <= 2 cos θ

)
=

∫ ∫
D′

r3 sin2 θdrdθ

=

∫ π
2

− π
2

(∫ 2 cos θ

0

r3 sin2 θdr

)
dθ

=

∫ π
2

− π
2

[
r4

4
sin2 θ

]r=2 cos θ

r=0

dθ

=

∫ π
2

− π
2

4 cos4 θ sin2 θdθ

= 8

∫ π
2

0

cos4 θ(1− cos2 θ)dθ

= 8

∫ π
2

0

(cos4 θ − cos6 θ)dθ

= 8

(
3 · 1
4 · 2

· π

2
− 5 · 3 · 1

6 · 4 · 2
· π

2

)
=

π

4

(4)

∫ ∫
D

(x2 + y2)
3
2 dxdy (D : x2 + y2 <= 2x, y >= 0)

=

∫ ∫
D′
(r2)

3
2 · rdrdθ

(
D′ : 0 <= θ <=

π

2
, 0 <= r <= 2 cos θ

)
=

∫ ∫
D′

r4drdθ

=

∫ π
2

0

(∫ 2 cos θ

0

r4dr

)
dθ

=

∫ π
2

0

[
r5

5

]r=2 cos θ

r=0

dθ

=

∫ π
2

0

32

5
cos5 θdθ

=
32

5
· 4 · 2
5 · 3

· 1

=
256

75

O x

y

1 2
θ

D
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(5)

∫ ∫
D

x2dxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)

=

∫ ∫
D′

r2 cos2 θ · rdrdθ
(
D′ : 0 <= θ <=

π

2
, cos θ <= r <= 1

)
=

∫ ∫
D′

r3 cos2 θdrdθ

=

∫ π
2

0

(∫ 1

cos θ

r3 cos2 θdr

)
dθ

=

∫ π
2

0

[
r4

4
cos2 θ

]r=1

r=cos θ

dθ

=

∫ π
2

0

1

4
(1− cos4 θ) cos2 θdθ

=
1

4

∫ π
2

0

(cos2 θ − cos6 θ)dθ

=
1

4

(
1

2
· π

2
− 5 · 3 · 1

6 · 4 · 2
· π

2

)
=

3

128
π

O 1 x

1

y

1
2

θ

D

(6)

∫ ∫
D

√
1− x2 − y2 dxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)

=

∫ ∫
D′

√
1− r2 · rdrdθ

(
D′ : 0 <= θ <=

π

2
, cos θ <= r <= 1

)
=

∫ π
2

0

{
− 1

2

∫ 1

cos θ

(1− r2)
1
2 · (−2r)dr

}
dθ

=

∫ π
2

0

− 1

2

[
2

3
(1− r2)

3
2

]r=1

r=cos θ

dθ

=

∫ π
2

0

− 1

3
(0− sin3 θ)dθ

=
1

3

∫ π
2

0

sin3 θdθ

=
1

3
· 2

3
· 1

=
2

9
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(7)

∫ ∫
D

√
x2 + y2 dxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)

=

∫ ∫
D′

√
r2 · rdrdθ

(
D′ : 0 <= θ <=

π

2
, cos θ <= r <= 1

)
=

∫ ∫
D′

r2drdθ

=

∫ π
2

0

(∫ 1

cos θ

r2dr

)
dθ

=

∫ π
2

0

[
r3

3

]r=1

r=cos θ

dθ

=

∫ π
2

0

1

3
(1− cos3 θ)dθ

=
1

3

(
π

2
− 2

3

)
=

π

6
− 2

9

(8)

∫ ∫
D

ydxdy (D : x <= x2 + y2 <= 1, x >= 0, y >= 0)

=

∫ ∫
D′

r sin θ · rdrdθ
(
D′ : 0 <= θ <=

π

2
, cos θ <= r <= 1

)
=

∫ ∫
D′

r2 sin θdrdθ

=

∫ π
2

0

(∫ 1

cos θ

r2 sin θdr

)
dθ

=

∫ π
2

0

[
r3

3
sin θ

]r=1

r=cos θ

dθ

=

∫ π
2

0

1

3
(1− cos3 θ) sin θdθ

=
1

3

∫ π
2

0

{
sin θ + cos3 θ · (− sin θ)

}
dθ

=
1

3

(
1 +

[
1

4
cos4 θ

] π
2

0

)

=
1

3

{
1 +

1

4
(0− 1)

}
=

1

4
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